Solutions to Final Exam

Problem 1. Suppose that u is a continuous function and a is a real constant satisfying

$$\int_0^x u(t)e^{a(t^2 - x^2)} \, dt = \sin x$$

for all x. Find a if $u'(\pi/2) = 5$.

SOLUTION: The given expression can be written in the form

$$e^{-ax^2} \int_0^x u(t)e^{at^2} dt = \sin x$$

(as $e^{a(t^2-x^2)} = e^{at^2}e^{-ax^2}$ and e^{-ax^2} can be taken out as a constant). Now, differentiate with respect to x, using the fundamental theorem of calculus, product rule, and chain rule:

$$e^{-ax^2}u(x)e^{ax^2} - 2ax\left[e^{-ax^2}\int_0^x u(t)e^{at^2}\,dt\right] = \cos x.$$

Notice that, due to the given relation, the expression in brackets is just $\sin x$ (and, of course, $e^{-ax^2}e^{ax^2} = 1$). Thus, we get $u(x) = 2ax \sin x + \cos x$. Differentiate once more and plug in $x = \pi/2$:

$$u'(x) = 2a\sin x + 2ax\cos x - \sin x, \qquad 5 = 2a - 1, \qquad \boxed{a = 3}$$

Problem 2. Evaluate

(a)
$$\int \frac{x}{\sqrt{1+x^2+\sqrt{(1+x^2)^3}}} dx$$
(b)
$$\int x \arctan dx = (1) \tan in \cos x$$

(b) $\int x \arctan x \, dx$ (Just in case: $\arctan x = \tan^{-1} x$ in your textbook notation.) SOLUTION:

(a)
$$\int \dots = \int \frac{x}{\sqrt{1+x^2}\sqrt{1+\sqrt{(1+x^2)}}} \, dx = \begin{bmatrix} u = \sqrt{1+x^2} \\ du = x \, dx/\sqrt{1+x^2} \end{bmatrix} = \int \frac{du}{\sqrt{1+u}} \\ = 2\sqrt{1+u} + C = \boxed{2\sqrt{1+\sqrt{1+x^2}} + C} \\ \text{(b)} \quad \int x \arctan x \, dx = \begin{bmatrix} u = \arctan x & v = x^2/2 \\ du = dx/(1+x^2) & dv = x \, dx \end{bmatrix} = \frac{x^2}{2} \arctan x - \frac{1}{2} \int \frac{x^2 \, dx}{1+x^2} \\ = \frac{x^2}{2} \arctan x - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2}\right) \, dx = \boxed{\frac{x^2}{2} \arctan x - \frac{x}{2} + \frac{1}{2} \arctan x + C} .$$

Problem 3. Given a tangent to the curve y = 1/x, denote by A and B its points of intersection with the x- and y-axis, respectively. Find the tangent(s) for which the segment [A, B] has minimal length.

SOLUTION: The tangent at a point (x_0, y_0) on the curve (where $x_0 \neq 0$ and $y_0 = 1/x_0$) is given by

$$y - \frac{1}{x_0} = -\frac{1}{x_0^2}(x - x_0)$$

Letting y = 0 and solving for x, we find $A = (2x_0, 0)$. Letting x = 0 and solving for y, we find $B = (0, 2/x_0)$. Thus, the length |AB| in question is

$$\ell(x_0) = 2\sqrt{x_0^2 + \frac{1}{x_0^2}}.$$

Switching back to x, we need to minimize the function $\ell(x)$ above on the domain $x \neq 0$. The derivative

$$\ell'(x) = 2\left(x - \frac{1}{x^3}\right) / \sqrt{x^2 + \frac{1}{x^2}}$$

has two roots, $x = \pm 1$, and checking the sign one can see that they are both points of minima. Hence, on each of the two intervals $(-\infty, 0)$ and $(0, \infty)$ the function has a unique critical point, which is a minimum and, hence, an absolute minimum. The values $\ell(-1) = \ell(1) = 2\sqrt{2}$ coincide. Finally, the tangents of minimal length are those at (1,1) and (-1,-1); their length is $2\sqrt{2}$, and their equations are y = -x+2 and y = -x-2, respectively.

Math 101 – Calculus I

Problem 4.

- (a) Find the absolute maximum value of the function $f(x) = x^{1/x}, x > 0$.
- (b) Compare e^{π} and π^{e} .

SOLUTION: (a) One has

$$\ln f(x) = \frac{1}{x} \ln x,$$
 $(\ln f(x))' = \frac{1 - \ln x}{x^2},$ and $f'(x) = x^{1/x} \frac{1 - \ln x}{x^2}.$

The only solution to f'(x) = 0 is x = e. One has f'(x) > 0 for $x \in (0, e)$ and f'(x) < 0 for $x \in (e, \infty)$. Hence, the function takes on its absolute maximum value at x = e; the value is $e^{1/e}$.

(b) According to part (a) one has $e^{1/e} = f(e) > \overline{f(\pi)} = \pi^{1/\pi}$. Raising both the sides to the power $e\pi$, we obtain $e^{\pi} > \pi^{e}$. (*Remark*: the two values are pretty close: $e^{\pi} \approx 23.14069264$ and $\pi^{e} \approx 22.45915771$.)

Problem 5. Find the following limits:

(a) $\lim_{x \to 0} \left(\frac{1}{x^3} \int_0^x \frac{e^{t^4} - e^{-t^4}}{t^2} dt \right)^{\frac{1}{2}}$ (b) $\lim_{x \to 0^+} (\sin(x^2))^{1/\ln x}$

SOLUTION: (a) Use L'Hôpital's rule twice:

$$\lim \dots \stackrel{(1)}{=} \lim_{x \to 0} \frac{\left(e^{x^4} - e^{-x^4}\right)/x^2}{3x^2} = \lim_{x \to 0} \frac{e^{x^4} - e^{-x^4}}{3x^4} \stackrel{(2)}{=} \lim_{x \to 0} \frac{4x^3 e^{x^4} + 4x^3 e^{-x^4}}{12x^3} = \boxed{\frac{2}{3}}.$$

(Note that L'Hôpital's rule does apply, as the integrand is a continuous function and, hence, $\lim_{x\to 0} \int_0^x \ldots = \int_0^0 \ldots = 0.$)

(b) Let $\lim_{x\to 0^+} (\sin(x^2))^{1/\ln x} = A$. Then

$$\ln A = \lim_{x \to 0^+} \frac{\ln\left(\sin(x^2)\right)}{\ln x} \stackrel{\text{L'Hôpital}}{=} \lim_{x \to 0^+} \frac{2x\cos(x^2)/\sin(x^2)}{1/x} = \lim_{x \to 0^+} \frac{2x^2\cos(x^2)}{\sin(x^2)} = 2 \quad \text{and} \quad \boxed{A = e^2}.$$