Solutions to Final Exam

Problem 1. Suppose that u is a continuous function and a is a real constant satisfying

$$
\int_{0}^{x} u(t) e^{a\left(t^{2}-x^{2}\right)} d t=\sin x
$$

for all x. Find a if $u^{\prime}(\pi / 2)=5$.
SOLUTION: The given expression can be written in the form

$$
e^{-a x^{2}} \int_{0}^{x} u(t) e^{a t^{2}} d t=\sin x
$$

(as $e^{a\left(t^{2}-x^{2}\right)}=e^{a t^{2}} e^{-a x^{2}}$ and $e^{-a x^{2}}$ can be taken out as a constant). Now, differentiate with respect to x, using the fundamental theorem of calculus, product rule, and chain rule:

$$
e^{-a x^{2}} u(x) e^{a x^{2}}-2 a x\left[e^{-a x^{2}} \int_{0}^{x} u(t) e^{a t^{2}} d t\right]=\cos x .
$$

Notice that, due to the given relation, the expression in brackets is just $\sin x$ (and, of course, $e^{-a x^{2}} e^{a x^{2}}=1$). Thus, we get $u(x)=2 a x \sin x+\cos x$. Differentiate once more and plug in $x=\pi / 2$:

$$
u^{\prime}(x)=2 a \sin x+2 a x \cos x-\sin x, \quad 5=2 a-1, \quad a=3 .
$$

Problem 2. Evaluate
(a) $\int \frac{x}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} d x$
(b) $\int x \arctan x d x \quad$ (Just in case: $\arctan x=\tan ^{-1} x$ in your textbook notation.)

SOLUTION:
(a) $\int \ldots=\int \frac{x}{\sqrt{1+x^{2}} \sqrt{1+\sqrt{\left(1+x^{2}\right)}}} d x=\left[\begin{array}{l}u=\sqrt{1+x^{2}} \\ d u=x d x / \sqrt{1+x^{2}}\end{array}\right]=\int \frac{d u}{\sqrt{1+u}}$

$$
=2 \sqrt{1+u}+C=2 \sqrt{1+\sqrt{1+x^{2}}}+C .
$$

(b) $\quad \int x \arctan x d x=\left[\begin{array}{ll}u=\arctan x & v=x^{2} / 2 \\ d u=d x /\left(1+x^{2}\right) & d v=x d x\end{array}\right]=\frac{x^{2}}{2} \arctan x-\frac{1}{2} \int \frac{x^{2} d x}{1+x^{2}}$

$$
=\frac{x^{2}}{2} \arctan x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x=\frac{x^{2}}{2} \arctan x-\frac{x}{2}+\frac{1}{2} \arctan x+C .
$$

Problem 3. Given a tangent to the curve $y=1 / x$, denote by A and B its points of intersection with the x - and y-axis, respectively. Find the tangent(s) for which the segment $[A, B]$ has minimal length.

SOLUTION: The tangent at a point $\left(x_{0}, y_{0}\right)$ on the curve (where $x_{0} \neq 0$ and $y_{0}=1 / x_{0}$) is given by

$$
y-\frac{1}{x_{0}}=-\frac{1}{x_{0}^{2}}\left(x-x_{0}\right)
$$

Letting $y=0$ and solving for x, we find $A=\left(2 x_{0}, 0\right)$. Letting $x=0$ and solving for y, we find $B=\left(0,2 / x_{0}\right)$. Thus, the length $|A B|$ in question is

$$
\ell\left(x_{0}\right)=2 \sqrt{x_{0}^{2}+\frac{1}{x_{0}^{2}}}
$$

Switching back to x, we need to minimize the function $\ell(x)$ above on the domain $x \neq 0$. The derivative

$$
\ell^{\prime}(x)=2\left(x-\frac{1}{x^{3}}\right) / \sqrt{x^{2}+\frac{1}{x^{2}}}
$$

has two roots, $x= \pm 1$, and checking the sign one can see that they are both points of minima. Hence, on each of the two intervals $(-\infty, 0)$ and $(0, \infty)$ the function has a unique critical point, which is a minimum and, hence, an absolute minimum. The values $\ell(-1)=\ell(1)=2 \sqrt{2}$ coincide. Finally, the tangents of minimal length are those at $(1,1)$ and $(-1,-1)$; their length is $2 \sqrt{2}$, and their equations are $y=-x+2$ and $y=-x-2$, respectively.

Problem 4.

(a) Find the absolute maximum value of the function $f(x)=x^{1 / x}, x>0$.
(b) Compare e^{π} and π^{e}.

SOLUTION: (a) One has

$$
\ln f(x)=\frac{1}{x} \ln x, \quad(\ln f(x))^{\prime}=\frac{1-\ln x}{x^{2}}, \quad \text { and } \quad f^{\prime}(x)=x^{1 / x} \frac{1-\ln x}{x^{2}}
$$

The only solution to $f^{\prime}(x)=0$ is $x=e$. One has $f^{\prime}(x)>0$ for $x \in(0, e)$ and $f^{\prime}(x)<0$ for $x \in(e, \infty)$. Hence, the function takes on its absolute maximum value at $x=e$; the value is $e^{1 / e}$.
(b) According to part (a) one has $e^{1 / e}=f(e)>f(\pi)=\pi^{1 / \pi}$. Raising both the sides to the power $e \pi$, we obtain $e^{\pi}>\pi^{e}$. (Remark: the two values are pretty close: $e^{\pi} \approx 23.14069264$ and $\pi^{e} \approx 22.45915771$.)

Problem 5. Find the following limits:
(a) $\lim _{x \rightarrow 0}\left(\frac{1}{x^{3}} \int_{0}^{x} \frac{e^{t^{4}}-e^{-t^{4}}}{t^{2}} d t\right)$
(b) $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{2}\right)\right)^{1 / \ln x}$
solution: (a) Use L'Hôpital's rule twice:

$$
\lim \ldots \stackrel{(1)}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x^{4}}-e^{-x^{4}}\right) / x^{2}}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x^{4}}-e^{-x^{4}}}{3 x^{4}} \stackrel{(2)}{=} \lim _{x \rightarrow 0} \frac{4 x^{3} e^{x^{4}}+4 x^{3} e^{-x^{4}}}{12 x^{3}}=\frac{2}{3}
$$

(Note that L'Hôpital's rule does apply, as the integrand is a continuous function and, hence, $\lim _{x \rightarrow 0} \int_{0}^{x} \ldots=$ $\int_{0}^{0} \ldots=0$.)
(b) Let $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{2}\right)\right)^{1 / \ln x}=A$. Then

$$
\ln A=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(\sin \left(x^{2}\right)\right)}{\ln x} \stackrel{\text { L'Hôpital }}{=} \lim _{x \rightarrow 0^{+}} \frac{2 x \cos \left(x^{2}\right) / \sin \left(x^{2}\right)}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2} \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)}=2 \quad \text { and } A=e^{2} \text {. }
$$

