Solutions to Midterm II

Problem 1. Find the limits:
(a) $\lim _{x \rightarrow 0^{+}} x^{x}$
(b) $\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{1 / x}$
(c) $\lim _{x \rightarrow 0} \frac{x(1-\cos x)}{x-\sin x}$.

SOLUTION: (mainly using l'Hôpital's rule)
(a) $\lim _{x \rightarrow 0^{+}} x^{x}=e^{\lim _{x \rightarrow 0^{+}} x \ln x}=e^{0}=1$ since $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}} x=0$.
(b) $\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{1 / x}=e^{\lim _{x \rightarrow 0} \ln \left(e^{x}+x\right) / x}=\boxed{e^{2}}$, since $\lim _{x \rightarrow 0} \frac{\ln \left(e^{x}+x\right)}{x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{e^{x}+1}{e^{x}+x}=2$.
(c) $\lim _{x \rightarrow 0} \frac{x(1-\cos x)}{x-\sin x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{(1-\cos x)+x \sin x}{1-\cos x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{\sin x+\sin x+x \cos x}{\sin x}=3$.

Remark. A common mistake was to misuse l'Hôpital's rule in the form $\lim f(x)=\lim f^{\prime}(x)$. This is wrong! Another mistake is to use the rule in the (correct) form $\lim f(x) / g(x)=\lim f^{\prime}(x) / g^{\prime}(x)$ when the condition $\lim f(x)=\lim g(x)=0$ or ∞ fails.

Problem 2. Find the center of mass of a thin plate of constant density δ covering the region bounded by the parabola $x=y^{2}-y$ and the line $y=x$.

SOLUTION: The points of intersection of the two curves, found from the equation $y^{2}-y=y$, are $y=0$ and $y=2$. Note also that on the interval $[0,2]$ one has $y^{2}-y \leq y$. (Just draw a picture.) Thus, the mass and the moments of the plate are

$$
\begin{aligned}
M & =\int_{0}^{2}\left(\int_{y^{2}-y}^{y} \delta d x\right) d y=\int_{0}^{2} \delta\left(2 y-y^{2}\right) d y=\left.\delta\left(y^{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{2}=\frac{4 \delta}{3} \\
M_{x} & =\int_{0}^{2}\left(\int_{y^{2}-y}^{y} \delta x d x\right) d y=\int_{0}^{2} \frac{\delta}{2}\left[y^{2}-\left(y^{2}-y\right)^{2}\right] d y=\left.\delta\left(\frac{1}{4} y^{4}-\frac{y^{5}}{10}\right)\right|_{0} ^{2}=\frac{4 \delta}{5}, \\
M_{y} & =\int_{0}^{2}\left(\int_{y^{2}-y}^{y} \delta y d x\right) d y=\int_{0}^{2} \delta\left(2 y-y^{2}\right) y d y=\left.\delta\left(\frac{2}{3} y^{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{2}=\frac{4 \delta}{3} .
\end{aligned}
$$

Thus, the coordinates (\bar{x}, \bar{y}) of the center of mass are $\bar{x}=M_{x} / M=3 / 5$ and $\bar{y}=M_{y} / M=1$.
Remark. Note that, unlike most other problems, here we treat x and y as independent variables, i.e., when integrating with respect to x, we assume that $y=$ const.

Problem 3. (a) Find $\frac{d}{d x}(\sin x)^{\tan x}$.
(b) Find $\lim _{x \rightarrow \infty} \frac{1}{x} \int_{0}^{x} \frac{t^{4} d t}{\left(1+t^{2}\right)^{2}}$.

SOLUTION: (a) Let $y=(\sin x)^{\tan x}$. Then $\ln y=\tan x \ln \sin x$. Hence,

$$
\frac{y^{\prime}}{y}(\ln y)^{\prime}=\frac{1}{\cos ^{2} x} \ln \sin x+\tan x \frac{\cos x}{\sin x}=\frac{\ln \sin x}{\cos ^{2} x}+1 \quad \text { and } \quad y^{\prime}=(\sin x)^{\tan x}\left(\frac{\ln \sin x}{\cos ^{2} x}+1\right) .
$$

Remark. A common mistake was to use the formula $\left(x^{n}\right)^{\prime}=n x^{n-1}$ or $\left(a^{x}\right)^{\prime}=a^{x} \ln a$. Neither of them applies directly!
(b) First, notice that the integral $\int_{0}^{\infty} t^{4} d t /\left(1+t^{2}\right)^{2}$ diverges (limit comparison test with $\left.\int_{0}^{\infty} d t=\infty\right)$. Hence, l'Hôpipal's rule applies to yield $\lim _{x \rightarrow \infty} x^{4} /\left(1+x^{2}\right)^{2}=1$. Alternatively, one can notice that $\int_{0}^{x} t^{4} d t /\left(1+t^{2}\right)^{2}=$ $x-\int_{0}^{x}\left(2 t^{2}+1\right) d t /\left(1+t^{2}\right)^{2}$ and that the integral $\int_{0}^{\infty}\left(2 t^{2}+1\right) d t /\left(1+t^{2}\right)^{2}$ converges (compare with $\left.\int_{1}^{\infty} d t / t^{2}\right)$. Thus, the limit is $1-\lim _{x \rightarrow \infty}\{$ bounded function $\} / x=1-0=1$.

Problem 4. The region between the curve $y=x \ln x$ and the x-axis from $x=0$ to $x=1$ is revolved about the x-axis to generate a solid. Find the volume of the solid.

SOLUTION: Just use the formula:

$$
\begin{aligned}
V=\int_{0}^{1} \pi y^{2} d x=\pi \int_{0}^{1} x^{2}(\ln x)^{2} d x & =\left[\begin{array}{ll}
u=(\ln x)^{2} & v=x^{3} / 3 \\
d u=2 \ln x / x & d v=x^{2}
\end{array}\right]=\left.\frac{\pi}{3} x^{3}(\ln x)^{2}\right|_{0} ^{1}-\frac{2 \pi}{3} \int_{0}^{1} x^{2} \ln x d x \\
& =\left[\begin{array}{ll}
u=\ln x & v=x^{3} / 3 \\
d u=1 / x & d v=x^{2}
\end{array}\right]=0-\left.\frac{2 \pi}{3} \cdot \frac{1}{3} x^{3} \ln x\right|_{0} ^{1}+\frac{2 \pi}{3} \cdot \frac{1}{3} \int_{0}^{1} x^{2} d x=\frac{2 \pi}{27} .
\end{aligned}
$$

Remark. Note that the integral is, in fact, proper as $\lim _{x \rightarrow 0} x \ln x=0$, cf. $\mathbf{1}$ (a). In particular, both the exintegral terms are 0 . However, this needs proof, as you get $[0 \cdot \infty]$.

Problem 5. Evaluate:
(a) $\int \frac{x^{3}-x}{\left(x^{2}+1\right)(x-1)^{2}} d x$
(b) $\int \frac{d x}{1+\sin x+\cos x}$

SOLUTION: (a) $\frac{x^{3}-x}{\left(x^{2}+1\right)(x-1)^{2}}=\frac{x^{2}+x}{\left(x^{2}+1\right)(x-1)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$. Multiplying by $(x-1)\left(x^{2}+1\right)$, we get the identity $x^{2}+x=(A+B) x^{2}+(-B+C) x+(A-C)$. Hence, $A=C=1$ and $B=0$ and the integral is $\int \frac{d x}{x-1}+\int \frac{d x}{x^{2}+1}=\ln |x-1|+\tan ^{-1} x+C$.
(b) Let's use the universal trigonometric substitution $t=\tan (x / 2)$. Then the integral is

$$
\int \frac{2 d t /\left(1+t^{2}\right)}{1+\left(2 t+1-t^{2}\right) /\left(1+t^{2}\right)}=\int \frac{d t}{t+1}=\ln |t+1|=\ln \left|\tan \frac{x}{2}+1\right|+C
$$

