Math 101 — Calculus I Spring 2001

Solutions to Midterm I

Problem 1. Find the limits (without using ’'Hépital’s rule):
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assuming that lim f/(z) = 5.
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(¢) lim () = f(8z) = lim Fl)6r = 3z) = lim ——~* =| — |, where ¢ € (3xz,5x) is given by the Mean

Value Theorem. Since x — oo, so does c.
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Problem 2. (a) Find y’, where y = ( el )
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(b) Find di’ and d—Z, where 22/3 4+ y2/3 = 1.
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SOLUTION:
(a) Use the chain rule and the fraction rule:

(( sin x )2)'_2 sinx ( sin )’
1+ cosx  "1+4cosz\1+cosz

sinz  cosx(l+ cosz) — sinx(—sinz) sinz(cosx + 1) 2sinx

1+ cosz (14 cosz)? 7 (I+4cosz)3 | (14cosz)? |

(b) Differentiate the equation 22/ + y?/3 = 1 to get = /3 + 4y~ 1/3y = 0. Thus, |y = —(x/y)*l/?’ . Now

differentiate this expression to find 3:
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Problem 3. Find the points on the curve 22 + zy + y? = 7 where the tangent is parallel to the z-axis. Write
the equations of the tangents at these points.

SOLUTION: First, differentiate the expression z2 + zy + 3% = 7 to find ¥/':

2
20 +y+xy +2yy =0, hence 3y = — Ty
T+ 2y
The tangent is parallel to the z-axis if and only if ¢ = 0, ie., 20 +y = 0 or y = —2x. From the orig-

inal equation it follows then that 2% — 222 + 422 = 7, ie., x = £./7/3. Thus, the points in question are
(x0,y0) = (£/7/3,F24/7/3) | and the tangents are found using the formula y — yo = ¥'(zo)(z — x0) (and the

fact that y'(xo) = 0): |y = F2/7/3|.

Problem 4. A right triangle whose hypotenuse is v/3 meters long is revolved around one of its legs to generate
a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this
way.

SOLUTION: Let 7, h, and V be the radius, height, and volume, respectively. Denote by I = v/3 the hypotenuse.
Then V = 7r?h/3. By the Pythagorean theorem one has r?+h? = [?. Hence, r? = > —h? and V = wh(I* —h?)/3.
This function is to be maximized on the interval (0,1), which can be replaced with the segment [0, [].

Find the critical points: V' = 71%/(3 — h?) = 0 yields h = [/+/3. Comparing the values V(0) = 0, V(I) = 0,

and V(1/v/3) = 271%/9v/3 > 0 one concludes that the maximal volume of the cone V = |271%/9v/3 = 27/3 | is
attained when h=|1/v3=1|and r = VI2 — 1% =|1/2/3 = V2.
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Problem 5. Sketch the graph of the function

z—1
f(ﬂ?):m

by finding the symmetry (if any), dominant terms, asymptotes, intervals of increasing and decreasing, extreme
points, concavity, and points of inflexion.

SOLUTION: There is no symmetry. The dominant term at infinity is 1/2%. Furthermore, since lim, .., f(z) = 0,
the line y = 0 is a horizontal asymptote. The vertical asymptotes correspond to the roots of the denominator:
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merator is always positive) and is defined whenever the original function is. Hence, there is no critical points.
The second derivative is

has no roots (the nu-
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Well ... The equation " = 0 does have a single real root, but it is not easy to find it. So, we will not investigate
the concavity of the graph.
It remains to determine the sign of ¢’ (i.e., the intervals of increasing/decreasing of the function):
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Here is the graph:




