Solutions to Midterm I

Problem 1. Find the limits (without using l'Hôpital's rule):
(a) $\lim _{x \rightarrow-5} \frac{x^{2}+3 x-10}{x+5}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3}{5 x^{2}+7}$
(c) $\lim _{x \rightarrow \infty} \frac{f(5 x)-f(3 x)}{3 x}$ assuming that $\lim _{x \rightarrow \infty} f^{\prime}(x)=5$.

SOLUTION:
(a) $\lim _{x \rightarrow-5} \frac{x^{2}+3 x-10}{x+5}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow-5} \frac{(x+5)(x-2)}{x+5}=\lim _{x \rightarrow-5} x-2=-7$.
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3}{5 x^{2}+7}=\left[\frac{\infty}{\infty}\right]=\lim _{x \rightarrow \infty} \frac{2+\left(3 / x^{2}\right)}{5+\left(7 / x^{2}\right)}=\frac{2}{5}$.
(c) $\lim _{x \rightarrow \infty} \frac{f(5 x)-f(3 x)}{3 x}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(c)(5 x-3 x)}{3 x}=\lim _{x \rightarrow \infty} \frac{2 f^{\prime}(c)}{3}=\frac{10}{3}$, where $c \in(3 x, 5 x)$ is given by the Mean

Value Theorem. Since $x \rightarrow \infty$, so does c.
Problem 2. (a) Find y^{\prime}, where $y=\left(\frac{\sin x}{1+\cos x}\right)^{2}$.
(b) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$, where $x^{2 / 3}+y^{2 / 3}=1$.

SOLUTION:

(a) Use the chain rule and the fraction rule:

$$
\begin{aligned}
& \left(\left(\frac{\sin x}{1+\cos x}\right)^{2}\right)^{\prime}=2 \frac{\sin x}{1+\cos x}\left(\frac{\sin x}{1+\cos x}\right)^{\prime} \\
& \quad=2 \frac{\sin x}{1+\cos x} \frac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^{2}}=2 \frac{\sin x(\cos x+1)}{(1+\cos x)^{3}}=\frac{2 \sin x}{(1+\cos x)^{2}}
\end{aligned}
$$

(b) Differentiate the equation $x^{2 / 3}+y^{2 / 3}=1$ to get $x^{-1 / 3}+y^{-1 / 3} y^{\prime}=0$. Thus, $y^{\prime}=-(x / y)^{-1 / 3}$. Now differentiate this expression to find $y^{\prime \prime}$:

$$
y^{\prime \prime}=\frac{1}{3}\left(\frac{x}{y}\right)^{-4 / 3} \frac{y-x y^{\prime}}{y^{2}}=\frac{1}{3}\left(\frac{x}{y}\right)^{-4 / 3} \frac{y+x(x / y)^{-1 / 3}}{y^{2}}=\frac{1}{3}\left(\frac{x}{y}\right)^{-4 / 3} \frac{y^{2 / 3}+x^{2 / 3}}{y^{5 / 3}}=\frac{1}{3 x^{4 / 3} y^{1 / 3}}
$$

Problem 3. Find the points on the curve $x^{2}+x y+y^{2}=7$ where the tangent is parallel to the x-axis. Write the equations of the tangents at these points.

SOLUTION: First, differentiate the expression $x^{2}+x y+y^{2}=7$ to find y^{\prime} :

$$
2 x+y+x y^{\prime}+2 y y^{\prime}=0, \quad \text { hence } \quad y^{\prime}=-\frac{2 x+y}{x+2 y}
$$

The tangent is parallel to the x-axis if and only if $y^{\prime}=0$, i.e., $2 x+y=0$ or $y=-2 x$. From the original equation it follows then that $x^{2}-2 x^{2}+4 x^{2}=7$, i.e., $x= \pm \sqrt{7 / 3}$. Thus, the points in question are $\left(x_{0}, y_{0}\right)=(\pm \sqrt{7 / 3}, \mp 2 \sqrt{7 / 3})$ and the tangents are found using the formula $y-y_{0}=y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ (and the fact that $\left.y^{\prime}\left(x_{0}\right)=0\right): y=\mp 2 \sqrt{7 / 3}$.

Problem 4. A right triangle whose hypotenuse is $\sqrt{3}$ meters long is revolved around one of its legs to generate a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this way.

SOLUTION: Let r, h, and V be the radius, height, and volume, respectively. Denote by $l=\sqrt{3}$ the hypotenuse. Then $V=\pi r^{2} h / 3$. By the Pythagorean theorem one has $r^{2}+h^{2}=l^{2}$. Hence, $r^{2}=l^{2}-h^{2}$ and $V=\pi h\left(l^{2}-h^{2}\right) / 3$. This function is to be maximized on the interval $(0, l)$, which can be replaced with the segment $[0, l]$.

Find the critical points: $V^{\prime}=\pi l^{2} /\left(3-h^{2}\right)=0$ yields $h=l / \sqrt{3}$. Comparing the values $V(0)=0, V(l)=0$, and $V(l / \sqrt{3})=2 \pi l^{3} / 9 \sqrt{3}>0$ one concludes that the maximal volume of the cone $V=2 \pi l^{3} / 9 \sqrt{3}=2 \pi / 3$ is attained when $h=l / \sqrt{3}=1$ and $r=\sqrt{l^{2}-h^{2}}=l \sqrt{2 / 3}=\sqrt{2}$.

Problem 5. Sketch the graph of the function

$$
f(x)=\frac{x-1}{x^{2}(x-2)}
$$

by finding the symmetry (if any), dominant terms, asymptotes, intervals of increasing and decreasing, extreme points, concavity, and points of inflexion.
solution: There is no symmetry. The dominant term at infinity is $1 / x^{2}$. Furthermore, since $\lim _{x \rightarrow \infty} f(x)=0$, the line $y=0$ is a horizontal asymptote. The vertical asymptotes correspond to the roots of the denominator: $x=0$ and $x=2$.

The first derivative $y^{\prime}=\frac{x^{2}(x-2)-(x-1)(2 x)(x-2)-(x-1) x^{2}}{x^{4}(x-2)^{2}}=-\frac{2 x^{2}-5 x+4}{x^{3}(x-2)^{2}}$ has no roots (the numerator is always positive) and is defined whenever the original function is. Hence, there is no critical points. The second derivative is

$$
-\frac{(4 x-5) x^{3}(x-2)^{2}-\left(2 x^{2}-5 x+4\right)\left(3 x^{2}\right)(x-2)^{2}-\left(x^{2}-2 x+2\right) x^{3}(2)(x-2)}{x^{6}(x-2)^{4}}=2 \frac{3 x^{3}-12 x^{2}+20 x-12}{x^{4}(x-2)^{3}} .
$$

Well \ldots. The equation $y^{\prime \prime}=0$ does have a single real root, but it is not easy to find it. So, we will not investigate the concavity of the graph.

It remains to determine the sign of y^{\prime} (i.e., the intervals of increasing/decreasing of the function):

x		0		2	
y^{\prime}	+	∞	-	∞	-
y	\nearrow	∞	\searrow	∞	\searrow

Here is the graph:

