NAME:	
I.D.:	

$Math \ 101 - Calculus \ I$

FINAL EXAM

Terms And Conditions

- 1. This exam consists of 5 questions of equal weight.
- 2. Each question is on a separate sheet. Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- **3.** Identical solutions (especially identically wrong ones) will <u>not</u> get credit.
- 4. Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- **5.** Calculators are $\underline{\text{not}}$ allowed.

Guidelines

- **1.** Indicate clearly and unambiguously your final result. In proofs, state explicitly each claim.
- 2. Do not misread the questions or skip parts thereof. If you did, do not complain.
- **3.** If you believe that a problem is misstated, do not try to solve it; explain your point of view instead.
- **4.** Each problem has a reasonably short solution. If your calculation goes out of hands, something must be wrong.

Please do not write below this line

1	2	3	4	5	Total

Final Exam

Problem 1. Evaluate

(a)
$$\int_{\pi^2/16}^{\pi^2/9} \frac{\tan\sqrt{x}}{2\sqrt{x}} dx$$

(b)
$$\int \frac{x+2}{\sqrt{1-x^2}} \, dx$$

Problem 2. Find the center of gravity of a uniform plate covering the region bounded by the curves $y = \pm (1 - x^2)^{-1/2}$ and the lines x = 0 and x = 1.

Problem 3. Test for absolute/conditional convergence. Explain your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n!)^2}{(2n)!}$$

(c)
$$\sum_{n=1}^{\infty} n^2 (2/3)^n$$

Problem 4. A rectangular sheet of perimeter 36 cm is to be rolled into a cylinder (to form its side surface). What should the dimensions x and y of the rectangular be to give the maximal volume?

Final Exam

Problem 5.

(a) Find the first four terms of the Maclaurin series of the function $f(x) = \sqrt{x+4}$.

(b) Find the Maclaurin series of the function $\sinh x = \frac{e^x + e^{-x}}{2}$.