ODTU-Bilkent Algebraic Geometry

800 conics in a smooth quartic surface

By

Alexander Degtyarev

(Bilkent)

Abstract: In Generalizing Bauer, define N_\{2n\}(d) as the maximal number of smooth rational curves of degree d that can lie in a smooth degree- $2 n$ K3-surface in $P^{\wedge}\{n+1\}$. (All varieties are over C.) The bounds $\mathrm{N} _\{2 \mathrm{n}\}(1)$ have a long history and currently are well known, whereas for $\mathrm{d}=2$ the only known value is $\mathrm{N} _6(2)=285$ (my recent result reported in this seminar). In the most classical case $2 \mathrm{n}=4$ (spatial quartics), the best known examples have 352 or 432 conics (Barth and Bauer), whereas the best known upper bound is 5016 (Bauer with a reference to Strømme).
For $\mathrm{d}=1$, the extremal configurations (for various values of n) tend to exhibit similar behavior. Hence, contemplating the findings concerning sextic surfaces, one may speculate that -- it is easier to count *all* conics, both irreducible and reducible, but -- nevertheless, in extremal configurations all conics are irreducible. On the other hand, famous Schur's quartic (the one on which the maximum $\mathrm{N} _4(1)$ is attained) has 720 conics (mostly reducible), suggesting that 432 should be far from the maximum N - $4(2)$. Therefore, in this talk I suggest a very simple (although also implicit) construction of a smooth quartic with 800 irreducible conics.
The quartic found is Kummer in the sense of Barth and Bauer: it contains 16 disjoint conics. I conjecture that $\mathrm{N} _4(2)=800$ and, moreover, 800 is the sharp upper bound on the total number of conics (irreducible or reducible) in a smooth spatial quartic.

Date: 5 March 2021, Friday
Time: 15:40
Place: Zoom

