Bilkent University
 Department of Mathematics
 ANALYSIS SEMINAR

Fall 2019

Gökhan Yıldırım
 Bilkent University

A one-dimensional probabilistic packing problem

Abstract: Consider n molecules lined up in a row. From among the $n-k+1$ nearest neighbor k-tuples, we select one uniformly randomly and bond the k molecules together. Then from the remaining nearest neighbor k-tuples, we select one uniformly randomly and bond the k molecules together. We continue this way until there are no nearest-neighbor k-tuples left.
Let the random variable $M_{n ; k}$ count the number of bonded molecules, and let $\mathbf{E}\left(M_{n ; k}\right)$ denote the the expected value of $M_{n ; k}$.
I will present the proof of the following result [1]:
Theorem. (R. G. Pinsky) For each integer $k \geq 2$,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E}\left(M_{n ; k}\right)}{n}=k e^{-2 \sum_{j=1}^{k-1 \frac{1}{j}}} \int_{0}^{1} e^{2 \sum_{j=1}^{k-1} \frac{s^{j}}{j}} d s
$$

Furthermore, $\frac{M_{n, k}}{n}$ satisfies the weak law of large numbers.
The result for $k=2$ goes back to an article in 1939 by Paul Flory, 1974 Nobel Laureate in Chemistry.
Some open problems will be discussed at the end of the talk.
[1] R. G. Pinsky. Problems from the Discrete to the Continuous-Probability, Number Theory, Graph Theory, and Combinatorics, Springer.

Date: Monday, October 7, 2019
Time: 14:00-15:00
Place: SA-Z18

Tea and cookies will be served AFTER the seminar. All are most cordially invited.

