“The radical series of
the Burnside functor as biset and related functors”

ERGUN YARANERI

(Bilkent
University)

ABSTRACT: The Burnside functor
B over a field K assigns to each finite group G a K-module B(G), and connects these
modules via induction, restriction, inflation, deflation maps, satisfying
several axioms, including the Mackey formula. We mainly consider B on the class
of all finite p-groups.

When the
characteristic of the field K is different from p, the subfunctor structure of
B as a biset functor is known. In this talk we mention some results about the
subfunctor structure of B when the characteristic of K is p, giving the
subfunctor structure of B as a biset functor on the class of all cyclic
p-groups, which turns out to be completely different from the known case. We
also mention some problems about B as a deflation and as a global Mackey
functor.

Date : November 26, 2008 (Wednesday)

Time : 14.40 – 15:30

Place: SAZ19