“Trivial Zeros, Kolyvagin Systems and Main Conjectures of Iwasawa Theory”





Kazım Büyükboduk




Abstract: Kolyvagin's machinery of Euler Systems is a powerful tool used to bound Selmer groups. If one looks at the Selmer groups over the Iwasawa tower,
same methods are used to prove that the characterictic ideal of the Selmer
group divides the ideal generated by the associated p-adic L-function (Main
conjectures in various settings state that these ideals in fact coincide).
Mazur and Rubin isolated the notion of "Kolyvagin System", which have
exactly the same applications as Euler Systems, but have a more rigid
structure. We prove that Kolyvagin Systems over the Iwasawa tower exist as
long as a certain trivial zero phenomenon does not occur.


Date:  30 December, 2005 Friday
Place: Bilkent, Mathematics Seminar Room SA-141


Tea and cookies will be served before the talk.