Problem Of The Month

April 2024

Problem:

Let $n \geq 3$ be an integer and $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. For each $1 \leq k \leq n$ the real numbers $b_{1}, b_{2}, \ldots, b_{n+1}$ are defined by

$$
b_{k}=\frac{a_{k}+\max \left\{a_{k+1}, a_{k+2}\right\}}{2}
$$

and $b_{n+1}=b_{1} \quad\left(a_{n+1}=a_{1}\right.$ and $\left.a_{n+2}=a_{2}\right)$. Show that the inequality

$$
\sum_{i=1}^{n}\left(a_{i}-a_{i+1}\right)^{2} \geq \sum_{i=1}^{n}\left(b_{i}-b_{i+1}\right)^{2}
$$

is held for each $n \geq 3$ and all real numbers $a_{1}, a_{2} \ldots, a_{n}$.

Solution:

Let $2 b_{i}=c_{i}$ and $a_{i}-a_{i+1}=x_{i}$. Since for all real numbers x and y

$$
\max \{x, y\}=\frac{x+y}{2}+\left|\frac{x-y}{2}\right|
$$

we get that

$$
\begin{equation*}
c_{i}-c_{i+1}=x_{i}+\frac{x_{i+1}}{2}+\frac{x_{i+2}}{2}+\left|\frac{x_{i+1}}{2}\right|-\left|\frac{x_{i+2}}{2}\right| \tag{1}
\end{equation*}
$$

For each index i let

$$
y_{i}=\frac{x_{i}}{2}+\left|\frac{x_{i}}{2}\right| \quad \text { and } \quad z_{i}=\frac{x_{i}}{2}-\left|\frac{x_{i}}{2}\right| .
$$

Then, $y_{i}=x_{i}, z_{i}=0$ for $x_{i} \geq 0$ and $y_{i}=0, z_{i}=x_{i}$ for $x_{i}<0$. Inserting y_{i} and z_{i} to (1) we get
$\left(c_{i}-c_{i+1}\right)^{2}=\left(x_{i}+y_{i+1}+z_{i+2}\right)^{2} \leq 2 x_{i}^{2}+2\left(y_{i+1}+z_{i+2}\right)^{2}=2 x_{i}^{2}+2 y_{i+1}^{2}+2 z_{i+2}^{2}+4 y_{i+1} z_{i+2}$
(above we used the inequality $(t+s)^{2} \leq 2 t^{2}+2 s^{2}$). Since $y_{i} \geq 0$ and $z_{i} \leq 0$ we get that $y_{i+1} z_{i+2} \leq 0$. Hence we get

$$
\begin{equation*}
\left(c_{i}-c_{i+1}\right)^{2} \leq 2 x_{i}^{2}+2 y_{i+1}^{2}+z_{i+2}^{2} \tag{2}
\end{equation*}
$$

Finally by using of the inequality (2) and equality $y_{i}^{2}+z_{i}^{2}=x_{i}^{2}$ in the problem statement

$$
\sum_{i=1}^{n} x_{i}^{2} \geq \sum_{i=1}^{n} \frac{1}{4}\left(c_{i}-c_{i+1}\right)^{2}
$$

we complete the solution.

