Bilkent University
Department of Mathematics

Problem Of The Month

Term: April 2024

Let $n \geq 3$ be an integer and $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. For each $1 \leq k \leq n$ the real numbers $b_{1}, b_{2}, \ldots, b_{n+1}$ are defined by

$$
b_{k}=\frac{a_{k}+\max \left\{a_{k+1}, a_{k+2}\right\}}{2}
$$

and $b_{n+1}=b_{1} \quad\left(a_{n+1}=a_{1}\right.$ and $\left.a_{n+2}=a_{2}\right)$. Show that the inequality

$$
\sum_{i=1}^{n}\left(a_{i}-a_{i+1}\right)^{2} \geq \sum_{i=1}^{n}\left(b_{i}-b_{i+1}\right)^{2}
$$

is held for each $n \geq 3$ and all real numbers $a_{1}, a_{2} \ldots, a_{n}$.

