

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2024

Problem:

For each positive integer n, let $\varphi(n)$ be the total number of positive integers not exceeding n and co-prime with n. Find all functions $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ satisfying the following two conditions:

$$a - b \mid f(a) - f(b)$$
 and
 $f(\varphi(a)) = \varphi(f(a)).$

Solution: Answer: $f(x) \equiv 1$ and f(x) = x.

By putting a = 1 to $f(\varphi(a)) = \varphi(f(a))$ we get $f(1) = \varphi(f(1))$ and hence f(1) = 1. By putting a = 2 we get $f(1) = \varphi(f(2))$ and since f(1) = 1 we get that either f(2) is either 1 or 2.

Case 1: f(2) = 1. Since $1 = f(2) = f(\varphi(3)) = \varphi(f(3))$ we get that f(3) is either 1 or 2. But since $(3-1) \mid f(3) - f(1)$ we get that f(3) = 1. By induction we show that f(n) = 1 for all positive integers n. Assume that f(a) = 1 for all $a = 1, 2, \ldots, n-1$. Then since $f(\varphi(n)) = \varphi(f(n))$ and $\varphi(n) \leq n-1$ we get $\varphi(f(n)) = 1$ and hence f(n)is either 1 or 2. Finally again since $n - (n-2) \mid f(n) - f(n-2)$ we get that f(n) = 1. Done.

Case 2: f(2) = 2. By induction we show that f(n) = n for all positive integers a. Assume that f(a) = a for all a = 1, 2, ..., n-1. By the first condition and by inductive hypothesis for each $1 \le a \le n-1$ we have $n-a \mid f(n)-a$ or equivalently $n-a \mid f(n)-n$. Therefore, for each integer $1 \le m \le n-1$ we have $m \mid f(n) - n$. Hence the common divisor M of all integers $1 \le m \le n-1$ also divides f(n) - n : f(n) = Ms + n, where s is integer. Then since $\varphi(n) < n$ by the second condition and by inductive hypothesis $\varphi(n) = \varphi(Ms + n)$. On the other hand, since each integer k with (n, k) = 1 and k < n divides M we have (k, Ms + n) = 1. Therefore, $\varphi(n) \le \varphi(Ms + n)$. If $s \ne 0$ then (Ms + n - 1, Ms + n) = 1 and hence we get that $\varphi(n) < \varphi(Ms + n)$. This contradiction shows that s = 0 and f(n) = n. Done.