Bilkent University
Department of Mathematics

Problem Of The Month

January 2024

Problem:

There are several red and several white boxes on the table, each of these boxes contains at least one ball. A positive integer number not exceeding 1111 is written on each of these balls.
\dagger Any two boxes contain different number of balls.
$\dagger \dagger$ No box contains two balls with the same number.
$\dagger \dagger \dagger$ For each $1 \leq i \leq 1111$ there is at most one red box containing ball number i.
$\dagger \dagger \dagger \dagger$ For each $1 \leq i \leq 1111$ there is at most one white box containing ball number i.
$\dagger \dagger \dagger \dagger \dagger$ For any two balls with numbers i and j, where $1 \leq i \leq 1111,1 \leq j \leq 1111$ and $i \neq j$ there is at most one box containing these two balls.

Find the maximal possible number of boxes on the table.

Solution: Answer: 57.
Let us give an example for 38 red boxes $R_{1}, R_{2}, \ldots, R_{38}$ and 19 white boxes $W_{39}, W_{40}, \ldots, W_{57}$ satisfying the conditions. We take 1102 balls numbered by $1,2, \ldots, 1002$ and divide them into groups A and B of sizes 741 and 361, respectively. Balls from A will be labeled by different pairs of positive indices (i, j) :

$$
A^{\prime}=\left\{(i, j): i, j \in \mathbb{Z}_{+}, \quad i+j \leq 39\right\}
$$

Balls from B will be labeled by different pairs of positive indices (i, j) :

$$
B^{\prime}=\left\{(i, j): i, j \in \mathbb{Z}_{+}, \quad i \leq 19, j \leq 19\right\}
$$

For each $1 \leq k \leq 38$ to the red box R_{k} we put k balls from A with $i=39-k$ and for each $39 \leq k \leq 57$ to the white box W_{k} we put k balls from A and B with $j=58-k$. It can be readily seen that all conditions of the problem are satisfied: each ball from A is in exactly one red box and in at most one white box and each ball from B is in exactly one white box.

Now let us show that if n boxes satisfy the conditions then $n \leq 57$. Let us consider 38 boxes with largest numbers of balls. Without loss of generality suppose that these boxes are boxes $R_{1}, R_{2}, \ldots, R_{m}$ and W_{m+1}, \ldots, W_{38}. Let $P(i)$ and $Q(j)$ be the set of balls in boxes R_{i} and W_{j}. By conditions $\left|P_{i} \cap Q_{j}\right| \leq 1$ and for $i \neq j$ we have $\left|P_{i} \cap P_{j}\right|=0$ and $\left|Q_{i} \cap Q_{j}\right|=0$. Therefore,

$$
\begin{gathered}
\sum\left|P_{i}\right|+\sum\left|Q_{i}\right| \\
=\left|P_{1} \cup \ldots \cup P_{k} \cup Q_{m+1} \cup \ldots \cup Q_{38}\right|+\sum\left|P_{i} \cap Q_{j}\right| \\
\leq 1111+k(38-k) \leq 1472 .
\end{gathered}
$$

On the other hand, since all boxes contain different numbers of balls, we get

$$
\sum\left|P_{i}\right|+\sum\left|Q_{i}\right| \geq n+(n-1)+\ldots+(n-37)=(2 n-37) \cdot 19
$$

Therefore, $2 n-37<78$ and hence $n \leq 57$.

Note: In the general case when there are l balls the answer is a maximal integer satisfying the inequality $n(n+1) \leq 3 l$.

