

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

January 2024

Problem:

There are several red and several white boxes on the table, each of these boxes contains at least one ball. A positive integer number not exceeding 1111 is written on each of these balls.

[†] Any two boxes contain different number of balls.

^{††} No box contains two balls with the same number.

††† For each $1 \le i \le 1111$ there is at most one red box containing ball number *i*.

†††† For each $1 \le i \le 1111$ there is at most one white box containing ball number *i*.

††††† For any two balls with numbers i and j, where $1 \le i \le 1111$, $1 \le j \le 1111$ and $i \ne j$ there is at most one box containing these two balls.

Find the maximal possible number of boxes on the table.

Solution: Answer: 57.

Let us give an example for 38 red boxes R_1, R_2, \ldots, R_{38} and 19 white boxes $W_{39}, W_{40}, \ldots, W_{57}$ satisfying the conditions. We take 1102 balls numbered by $1, 2, \ldots, 1002$ and divide them into groups A and B of sizes 741 and 361, respectively. Balls from A will be labeled by different pairs of positive indices (i, j):

$$A' = \{(i, j) : i, j \in \mathbb{Z}_+, \ i+j \le 39\}$$

Balls from B will be labeled by different pairs of positive indices (i, j):

$$B' = \{(i,j) : i, j \in \mathbb{Z}_+, \ i \le 19, j \le 19\}.$$

For each $1 \le k \le 38$ to the red box R_k we put k balls from A with i = 39 - k and for each $39 \le k \le 57$ to the white box W_k we put k balls from A and B with j = 58 - k. It can be readily seen that all conditions of the problem are satisfied: each ball from A is in exactly one red box and in at most one white box and each ball from B is in exactly one white box.

Now let us show that if n boxes satisfy the conditions then $n \leq 57$. Let us consider 38 boxes with largest numbers of balls. Without loss of generality suppose that these boxes are boxes R_1, R_2, \ldots, R_m and W_{m+1}, \ldots, W_{38} . Let P(i) and Q(j) be the set of balls in boxes R_i and W_j . By conditions $|P_i \cap Q_j| \leq 1$ and for $i \neq j$ we have $|P_i \cap P_j| = 0$ and $|Q_i \cap Q_j| = 0$. Therefore,

$$\sum |P_i| + \sum |Q_i|$$
$$= |P_1 \cup \ldots \cup P_k \cup Q_{m+1} \cup \ldots \cup Q_{38}| + \sum |P_i \cap Q_j|$$
$$\leq 1111 + k(38 - k) \leq 1472.$$

On the other hand, since all boxes contain different numbers of balls, we get

$$\sum |P_i| + \sum |Q_i| \ge n + (n-1) + \ldots + (n-37) = (2n-37) \cdot 19$$

Therefore, 2n - 37 < 78 and hence $n \le 57$.

Note: In the general case when there are l balls the answer is a maximal integer satisfying the inequality $n(n+1) \leq 3l$.