

Bilkent University
 Department of Mathematics

Problem Of The Month

December 2023

Problem:

There are several red and several white boxes on the table, each of these boxes contains at least one ball. A positive integer number not exceeding 1111 is written on each of these balls.
\dagger Any two boxes contain different number of balls.
$\dagger \dagger$ No box contains two balls with the same number.
$\dagger \dagger \dagger$ For each $1 \leq i \leq 1111$ there is at most one red box containing ball with number i.
$\dagger \dagger \dagger \dagger$ For each $1 \leq i \leq 1111$ there is at most one white box containing ball with number i.
Find the maximal possible number of boxes on the table.

Solution: Answer: 66.
Suppose that the total number of boxes is n and these boxes contain $a_{1}<a_{2}<\cdots<a_{n}$ balls. Then

$$
2 \cdot 1111 \geq \sum_{i=1}^{n} a_{i} \geq \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

The largest integer n satisfying the above inequality is $n=66$. Now one can construct a proper example for $n=66$ when there are 46 red boxes containing $1,2, \ldots, 15,16,18,19, \ldots, 46,47$ balls and 20 white boxes containing $17,48,49, \ldots, 46,47$ balls, respectively since here the total number of balls in red boxes is 1111 the and the total number of balls in white boxes is 1100 .

