Bilkent University Department of Mathematics

Problem Of The Month

November 2023

Problem:

Let P be a polynomial of degree n with real coefficients such that at least n of its coefficients coincide and at most one of its coefficients is zero. Given that all n roots of P are real numbers find the maximal possible value of n.

Solution: Answer: The maximal possible value is $n=4$.
The polynomial

$$
P(x)=x^{4}+x^{3}-4 x^{2}+x+1=(x-1)(x-1)\left(x+\frac{3+\sqrt{5}}{2}\right)\left(x+\frac{3-\sqrt{5}}{2}\right)
$$

satisfies problem conditions. Let us show that there is no polynomial of degree $n \geq 5$ satisfying the conditions. Without loss of generality we assume that at least n coefficients of the polinomial are 1 .

Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots and S_{k} be the sum of k-wise sums of the roots:

$$
S_{1}=x_{1}+\cdots x_{n}, S_{2}=x_{1} x_{2}+\cdots+x_{n-1} x_{n}, \ldots, S_{n}=x_{1} x_{2} \cdots x_{n}
$$

By Vieta theorem we have

$$
S_{1}^{2}-2 S_{2}=\sum_{i=1}^{n} x_{i}^{2} \geq 0
$$

If the first three coefficients of P are 1 then we get a contradiction with the last inequality:

$$
S_{1}=-1, S_{2}=1 \text { and } S_{1}^{2}-2 S_{2}=-1<0
$$

Therefore, one of the first three coefficients is not 1 . Then the free coefficient is 1 and 0 is not a root of P. In this case we have

$$
\left(\frac{S_{n-1}}{S_{n}}\right)^{2}-2\left(\frac{S_{n-2}}{S_{n}}\right)=\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}>0 .
$$

If the last three coefficients of P are 1 then we get a contradiction with the last inequality:

$$
S_{n-2}=-S_{n-1}=S_{n} \text { ve }\left(\frac{S_{n-1}}{S_{n}}\right)^{2}-2\left(\frac{S_{n-2}}{S_{n}}\right)<0
$$

Since at least n coefficients of P out of $n+1$ are 1 when $n \geq 5$ either first three or last three coefficients of P should be 1 , a contradiction.

