

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2023

Problem:

Let S be the set of all 2023 tuples $(x_1, x_2, \ldots, x_{2023})$, where $x_i \in \{1, 2, \ldots, 100\}$ for each $1 \leq i \leq 2023$. The subset $T \subset S$ is said to be down-dense if for each $(x_1, x_2, \ldots, x_{2023}) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \leq x_i$ $(1 \leq i \leq 2023)$ also belongs to T. The subset $T \subset S$ is said to be up-dense if for each $(x_1, x_2, \ldots, x_{2023}) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \geq x_i$ $(1 \leq i \leq 2023)$ also belongs to T. The subset $T \subset S$ is said to be up-dense if for each $(x_1, x_2, \ldots, x_{2023}) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \geq x_i$ $(1 \leq i \leq 2023)$ also belongs to T. Find the minimal possible value of

$$f(A,B) = \frac{|A| \cdot |B|}{|A \cap B|},$$

where A and B are non-empty down-dense and up-dense subsets of \mathcal{S} , respectively.

Note: |T| denotes the number of elements of a set T.

Solution: Answer: 100^{2023} .

Let us treat more general case when S is the set of all n tuples. If A = B = S then $f(A, B) = 100^n$. We prove that $f(A, B) \ge 100^n$ by induction over n.

n = 1. Suppose that $A = \{1, 2, \dots, a+c\}, B = \{100-b-c+1, \dots, 100\}$. Then $|A \cap B| = c$, |A| = a + c, |B| = b + c and

$$f(A,B) = \frac{(a+c)(b+c)}{c} = \frac{(a+b+c)c+ab}{c} = 100 + \frac{ab}{c} \ge 100.$$

Suppose that the statement is correct for n-1. Let $A = \bigcup_{i=1}^{100} A_i$, where elements of the set A_i are obtained from elements of A having last entry i by removing this last entry. By definitions $|A| = \sum_{i=1}^{100} |A_i|$ and $A_1 \subset A_2 \subset \cdots \subset A_{100}$. Let $B = \bigcup_{i=1}^{100} B_i$, where elements

of the set B_i are obtained from elements of B having last entry i by removing this last entry. By definitions $|B| = \sum_{i=1}^{100} |B_i|$ and $B_1 \supset B_2 \supset \cdots \supset B_{100}$. Now

$$|A \cap B| = \sum_{i=1}^{100} |A_i \cap B_i| \le \frac{1}{100^{n-1}} \cdot \sum_{i=1}^{100} |A_i| \cdot |B_i|$$
$$\le \frac{1}{100^{n-1}} \cdot \frac{1}{100} \cdot \left(\sum_{i=1}^{100} |A_i|\right) \left(\sum_{i=1}^{100} |B_i|\right) = \frac{1}{100^n} \cdot |A| \cdot |B|$$

(The first inequality is valid due to inductive hypothesis, the second inequality is the Chebyshev's rearrangement inequality). We are done.