Problem Of The Month

October 2023

Problem:

Let \mathcal{S} be the set of all 2023 tuples $\left(x_{1}, x_{2}, \ldots, x_{2023}\right)$, where $x_{i} \in\{1,2, \ldots, 100\}$ for each $1 \leq i \leq 2023$. The subset $T \subset \mathcal{S}$ is said to be down-dense if for each $\left(x_{1}, x_{2}, \ldots, x_{2023}\right) \in T$ any $\left(y_{1}, y_{2}, \ldots, y_{2023}\right)$ satisfying $y_{i} \leq x_{i}(1 \leq i \leq 2023)$ also belongs to T. The subset $T \subset \mathcal{S}$ is said to be up-dense if for each $\left(x_{1}, x_{2}, \ldots, x_{2023}\right) \in T$ any $\left(y_{1}, y_{2}, \ldots, y_{2023}\right)$ satisfying $y_{i} \geq x_{i}(1 \leq i \leq 2023)$ also belongs to T. Find the minimal possible value of

$$
f(A, B)=\frac{|A| \cdot|B|}{|A \cap B|},
$$

where A and B are non-empty down-dense and up-dense subsets of \mathcal{S}, respectively.

Note: $|T|$ denotes the number of elements of a set T.

Solution: Answer: 100^{2023}.
Let us treat more general case when \mathcal{S} is the set of all n tuples. If $A=B=\mathcal{S}$ then $f(A, B)=100^{n}$. We prove that $f(A, B) \geq 100^{n}$ by induction over n.
$n=1$. Suppose that $A=\{1,2, \ldots, a+c\}, B=\{100-b-c+1, \ldots, 100\}$. Then $|A \cap B|=c$, $|A|=a+c,|B|=b+c$ and

$$
f(A, B)=\frac{(a+c)(b+c)}{c}=\frac{(a+b+c) c+a b}{c}=100+\frac{a b}{c} \geq 100
$$

Suppose that the statement is correct for $n-1$. Let $A=\cup_{i=1}^{100} A_{i}$, where elements of the set A_{i} are obtained from elements of A having last entry i by removing this last entry. By definitions $|A|=\sum_{i=1}^{100}\left|A_{i}\right|$ and $A_{1} \subset A_{2} \subset \cdots \subset A_{100}$. Let $B=\cup_{i=1}^{100} B_{i}$, where elements
of the set B_{i} are obtained from elements of B having last entry i by removing this last entry. By definitions $|B|=\sum_{i=1}^{100}\left|B_{i}\right|$ and $B_{1} \supset B_{2} \supset \cdots \supset B_{100}$. Now

$$
\begin{aligned}
& |A \cap B|=\sum_{i=1}^{100}\left|A_{i} \cap B_{i}\right| \leq \frac{1}{100^{n-1}} \cdot \sum_{i=1}^{100}\left|A_{i}\right| \cdot\left|B_{i}\right| \\
\leq & \frac{1}{100^{n-1}} \cdot \frac{1}{100} \cdot\left(\sum_{i=1}^{100}\left|A_{i}\right|\right)\left(\sum_{i=1}^{100}\left|B_{i}\right|\right)=\frac{1}{100^{n}} \cdot|A| \cdot|B|
\end{aligned}
$$

(The first inequality is valid due to inductive hypothesis, the second inequality is the Chebyshev's rearrangement inequality). We are done.

