

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

Term: October 2023

Let S be the set of all 2023 tuples $(x_1, x_2, \ldots, x_{2023})$, where $x_i \in \{1, 2, \ldots, 100\}$ for each $1 \leq i \leq 2023$. The subset $T \subset S$ is said to be down-dense if for each $(x_1, x_2, \ldots, x_{2023}) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \leq x_i$ $(1 \leq i \leq 2023)$ also belongs to T. The subset $T \subset S$ is said to be up-dense if for each $(x_1, x_2, \ldots, x_{2023}) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \geq x_i$ $(1 \leq i \leq 2023) \in T$ any $(y_1, y_2, \ldots, y_{2023})$ satisfying $y_i \geq x_i$ $(1 \leq i \leq 2023)$ also belongs to T. Find the minimal possible value of

$$f(A,B) = \frac{|A| \cdot |B|}{|A \cap B|},$$

where A and B are non-empty down-dense and up-dense subsets of \mathcal{S} , respectively.

Note: |T| denotes the number of elements of a set T.