

Bilkent University
 Department of Mathematics

Problem Of The Month

Term: October 2023

Let \mathcal{S} be the set of all 2023 tuples $\left(x_{1}, x_{2}, \ldots, x_{2023}\right)$, where $x_{i} \in\{1,2, \ldots, 100\}$ for each $1 \leq i \leq 2023$. The subset $T \subset \mathcal{S}$ is said to be down-dense if for each $\left(x_{1}, x_{2}, \ldots, x_{2023}\right) \in T$ any $\left(y_{1}, y_{2}, \ldots, y_{2023}\right)$ satisfying $y_{i} \leq x_{i}(1 \leq i \leq 2023)$ also belongs to T. The subset $T \subset \mathcal{S}$ is said to be up-dense if for each $\left(x_{1}, x_{2}, \ldots, x_{2023}\right) \in T$ any $\left(y_{1}, y_{2}, \ldots, y_{2023}\right)$ satisfying $y_{i} \geq x_{i}(1 \leq i \leq 2023)$ also belongs to T. Find the minimal possible value of

$$
f(A, B)=\frac{|A| \cdot|B|}{|A \cap B|},
$$

where A and B are non-empty down-dense and up-dense subsets of \mathcal{S}, respectively.

Note: $|T|$ denotes the number of elements of a set T.

