Bilkent University
Department of Mathematics

Problem Of The Month

September 2023

Problem:

Let k be a positive integer and \mathcal{S} be a family of 63 sets, each having size k. Suppose that for all $A, B \in \mathcal{S}, A \neq B$ we have $A \triangle B \in \mathcal{S}$. Find all possible values of k.

Note: $A \triangle B=(A \backslash B) \cup(B \backslash A)$.

Solution: Answer: $k=32 m$, where m is a positive integer.
Let us fix some $A \in \mathcal{S}$ and $x \in A$. Let \mathcal{S}_{x} be the set of all sets from \mathcal{S} containing x and $\overline{\mathcal{S}}_{x}=\mathcal{S} \backslash \mathcal{S}_{x}$ be its complement. It can be readily seen that for any two distinct $B \in \mathcal{S}_{x}$ and $C \in \mathcal{S}_{x}$ we have $A \triangle B \in \overline{\mathcal{S}}_{x}$ and $A \triangle C \in \overline{\mathcal{S}}_{x}$ and these two sets are distinct. On the other hand, since $A \triangle D \in \mathcal{S}_{x}$ for any $D \in \overline{\mathcal{S}}_{x}$ and $A \triangle(A \triangle D)=D$ we get that $\left|\mathcal{S}_{x} \backslash A\right|=\left|\overline{\mathcal{S}}_{x}\right|$. Therefore, since $|\mathcal{S}|=63$ we get $\left|\mathcal{S}_{x}\right|=32$. Let $N=\left|\bigcup_{U \in \mathcal{S}} U\right|$. Then by counting the total number of all possible pairs (y, U), where $y \in U$ in two different ways we get that $32 N=63 k$. Therefore, $32 \mid k$ and $k=32 m$.

Now we give an example for $k=32 m$. Let $k=32 m$ for some $m \in \mathbb{N}$, and let $L=\{1,2, \ldots, 6\}$. Let us define 6 sets $T_{1}, T_{2}, \ldots, T_{6}$ such that for any non-empty $R \subseteq L$ the set

$$
T_{R}=\left(\bigcap_{r \in R} T_{r}\right) \backslash\left(\bigcup_{r \in L \backslash R} T_{r}\right)
$$

contains exactly m elements.
It can be readily seen that the operation of symmetric difference between several sets is commutative and associative. Therefore, the expression $\triangle_{j \in J} T_{j}$ is well defined. Now, it can be readily seen that for every non-empty $J \subseteq\{1,2, \ldots, 6\}$, we have

$$
\triangle_{j \in J} T_{j}=\bigcup_{R \subseteq L,|R \cap J| \text { is odd }} T_{R}
$$

Since for any non-empty J there are exactly 2^{5} subsets $R \subseteq L$ for which $|R \cap J|$ is odd, it follows that $\left|\triangle_{j \in J} T_{j}\right|=32 \mathrm{~m}$.

By definitions, for any two distinct non-empty J_{1} and J_{2} the corresponding sets $\triangle_{j \in J_{1}} T_{j}$ and $\triangle_{j \in J_{2}} T_{j}$ are also distinct. On the other hand,

$$
\left(\triangle_{j \in J_{1}} T_{j}\right) \triangle\left(\triangle_{j \in J_{2}} T_{j}\right)=\triangle_{j \in J_{1} \triangle J_{2}} T_{j} .
$$

Therefore, the set

$$
\mathcal{S}=\left\{\triangle_{j \in J} T_{j}: J \subseteq L, J \neq \emptyset\right\}
$$

containing $2^{6}-1=63$ elements satisfies all required conditions.

