

Bilkent University
Department of Mathematics

Problem Of The Month

June 2023

Problem:

Find all pairs (p, q) satisfying

$$
p\left(p^{4}+p^{2}+10 q\right)=q\left(q^{2}+3\right)
$$

where p and q are prime numbers.

Solution: Answer: $(p, q)=(2,5)$.

If $p=q$ then left hand side is greater than right hand side, so we may assume that $p \neq q$. If $p>3$, then $p \mid q^{2}+3$ and hence -3 is a quadratic residue in $(\bmod p)$ and consequently $p \equiv 1(\bmod 3)$. Then, looking at modulo 3 we get

$$
p\left(p^{4}+p^{2}+10 q\right) \equiv q+2 \quad(\bmod 3)
$$

while $q\left(q^{2}+3\right) \equiv q(\bmod 3)$, by Fermat's little theorem or just by direct check, a contradiction.

Checking the values $p=2,3$ we find out that the only solution is $(p, q)=(2,5)$.

