Bilkent University Department of Mathematics

Problem Of The Month

May 2023

Problem:

In a school having n students any student has exactly 971 friends and if two students are not friends then they have exactly 970 common friends. Find all possible values of n.

Solution: Answer: $n=972,974,980,1164,1940$.

Let us reformulate a more general version of the problem in terms of the graph theory: In a regular graph G on n vertices each vertex has a degree $k<n-1$ and if two vertices are not neighbours then they have exactly $k-1$ common neighbours. Find all pairs (n, k) satisfying these conditions.

If $n=972$ then the complete graph satisfies the conditions. The answer in the remaining cases: all pairs $(n, k)=(2 a b, 2 a(b-1)+1)$ where $a>1$ and b are positive integers and also all pairs $(n, n-3)$ (if $n=4 b$ then all pairs $(n, n-3)$ are among pairs given by $(n, k)=(2 a b, 2 a(b-1)+1))$.

Let w be a vertex with neighbours v_{1}, \ldots, v_{k}. If some vertex is not a neighbour of w then it is directly connected to $k-1$ neighbours of w and hence it has exactly 1 neighbour among remaining vertices. Therefore, all vertices in the graph $G-\left\{w, v_{1}, \ldots, v_{k}\right\}$ have degree 1 and consequently the number of vertices not directly connected to w is even. Let us denote them by $u_{1}, \ldots, u_{2 l}$. Since $1+k+2 l=n$ we get that $2 l=n-k-1$. Without loss of generality for $1 \leq t \leq l$ let $u_{2 t-1}$ and $u_{2 t}$ be neighbours. When $l=1$ we get a pair $(n, n-3)$. Let $l \geq 2$. For any $t \geq 3$ the vertices u_{1} and u_{t} are not neighbours and their unique neighbours among vertices u_{i} are not common. Hence, u_{1} and u_{t} have $k-1$ neighbours among vertices v_{i}. The same is true for u_{2} and u_{t}. Therefore, all these vertices are connected to the same $k-1$ vertices of w. Without loss of generality, let v_{1} be the vertex not connected to $u_{i}, 1 \leq i \leq 2 l$. Since the degree of v_{1} is k it is directly connected to each v_{i}. Therefore, for each $2 \leq i \leq k$ the degree of v_{i} in $G-\left\{w, v_{1}, u_{1}, \ldots, u_{2 l}\right\}$ is $k-1-1-2 l=2 k-n-1$. Then the graph on the vertices v_{2}, \ldots, v_{k} satisfies problem conditions with new parameters $(k-1,2 k-n-1)$. Since $(k-1)-(2 k-n-1)=n-k$, by
repeating the same procedure we get that the graph G contains pieces with $2 l+2$ vertices and each piece contains $l+1$ perfectly matching edges and all possible edges between different pieces are drawn. By denoting $l+1$ by a and the number of pieces by b we get the desired answer.

When $k=971$ from $2 a(b-1)+1=971$ we get that $a \mid 485=5 \cdot 97$. Therefore the possible values for a are $a=5,97,485$ and we get $n=2 a b=980,1164,1940$. The pair ($n, n-3$) yields $n=974$.

