Bilkent University
Department of Mathematics

Problem Of The Month

April 2023

Problem:

Find the smallest value of

$$
x y^{3} z^{2}+\frac{4 z}{x}-8 y z-\frac{4}{x y}
$$

where x, y, z are positive real numbers satisfying at least one of the following inequalities:

$$
x y>\frac{1}{2} \quad \text { and } \quad y z>1 .
$$

Solution: Answer: -8. This value is attained at $x y=1$ and $y z=2$.
By AM-GM inequality we get

$$
\begin{equation*}
2 y-\frac{1}{x} \leq x y^{2} \text { and } 4 z-\frac{4}{y} \leq y z^{2} \tag{1}
\end{equation*}
$$

Since at least one of the inequalities: $x y>\frac{1}{2}$ and $y z>1$ is held at least one of the inequalities

$$
2 y-\frac{1}{x}>0 \quad \text { and } \quad 4 z-\frac{4}{y}>0
$$

is also held. Therefore, we can multiply two inequalities in (1) and

$$
-8-\frac{4 z}{x}+8 y z+\frac{4}{x y}=\left(2 y-\frac{1}{x}\right)\left(4 z-\frac{4}{y}\right) \leq x y^{3} z^{2} .
$$

Thus,

$$
x y^{3} z^{2}+\frac{4 z}{x}-8 y z-\frac{4}{x y} \geq-8
$$

