

Bilkent University Department of Mathematics

## PROBLEM OF THE MONTH

February 2023

## Problem:

We say that two monic quadratic polynomials  $P(x) = x^2 + ax + b$  and  $Q(x) = x^2 + cx + d$  with integer coefficients are disjoint if  $P(i) \neq Q(j)$  for any two integers *i* and *j*. Find the maximal number of pairwise disjoint monic quadratic polynomials with integer coefficients.

## Solution: Answer: 2.

Note that for any integer C the change of variables  $x \mapsto x + C$  leaves unchanged the range of any polynomial. Therefore, we can transfer each polynomial  $P(x) = x^2 + ax + b$  to

$$P(x - \lfloor \frac{a}{2} \rfloor) = x^2 + x(a - 2\lfloor \frac{a}{2} \rfloor) + (\lfloor \frac{a}{2} \rfloor)^2 - a(\lfloor \frac{a}{2} \rfloor) + b$$

by using of the change  $x \mapsto x - \lfloor \frac{a}{2} \rfloor$ . As a result we will get polynomials of the forms either  $P(x) = x^2 + b$  or  $P(x) = x^2 + x + b$ . Any two polynomials of different forms are not disjoint: For any two polynomial  $P_1(x) = x^2 + b_1$  and  $P_2(x) = x^2 + x + b_2$  we have  $P_1(b_1 - b_2) = P_2(b_1 - b_2)$ . Therefore, the set of pairwise disjoint polynomials may contain only polynomials of the same form.

Let  $P_1(x) = x^2 + b_1$  and  $P_2(x) = x^2 + b_2$ . If  $b_1 - b_2 = 2k + 1$  then  $P_1(k) = P_2(k+1)$ . If  $b_1 - b_2 = 4k$  then  $P_1(k-1) = P_2(k+1)$ . Therefore, if  $P_1(x) = x^2 + b_1$  and  $P_2(x) = x^2 + b_2$  are disjoint then  $b_1 - b_2 = 1, 3 \pmod{4}$ . Thus there are at most two disjoint polynomials of the form  $P(x) = x^2 + b$ .

Let  $P_1(x) = x^2 + x + b_1$  and  $P_2(x) = x^2 + x + b_2$ . If  $b_1 - b_2 = 2k$  then  $P_1(k-1) = P_2(k)$ . Therefore, if  $P_1(x) = x^2 + b_1$  and  $P_2(x) = x^2 + b_2$  are disjoint then  $b_1 - b_2 = 1 \pmod{2}$ . Thus there are at most two disjoint polynomials of the form  $P(x) = x^2 + x + b$ .

Therefore, the set of pairwise disjoint polynomials may contain only two polynomials.

The polynomials  $P_1(x) = x^2$  and  $P_2 = x^2 + 2$ , also the polynomials  $P_1(x) = x^2 + x$  and  $P_2 = x^2 + x + 1$  are disjoint. We are done.