Bilkent University
Department of Mathematics

Problem Of The Month

February 2023

Problem:

We say that two monic quadratic polynomials $P(x)=x^{2}+a x+b$ and $Q(x)=x^{2}+$ $c x+d$ with integer coefficients are disjoint if $P(i) \neq Q(j)$ for any two integers i and j. Find the maximal number of pairwise disjoint monic quadratic polynomials with integer coefficients.

Solution: Answer: 2.
Note that for any integer C the change of variables $x \mapsto x+C$ leaves unchanged the range of any polynomial. Therefore, we can transfer each polynomial $P(x)=x^{2}+a x+b$ to

$$
P\left(x-\left\lfloor\frac{a}{2}\right\rfloor\right)=x^{2}+x\left(a-2\left\lfloor\frac{a}{2}\right\rfloor\right)+\left(\left\lfloor\frac{a}{2}\right\rfloor\right)^{2}-a\left(\left\lfloor\frac{a}{2}\right\rfloor\right)+b
$$

by using of the change $x \mapsto x-\left\lfloor\frac{a}{2}\right\rfloor$. As a result we will get polynomials of the forms either $P(x)=x^{2}+b$ or $P(x)=x^{2}+x+b$. Any two polynomials of different forms are not disjoint: For any two polynomial $P_{1}(x)=x^{2}+b_{1}$ and $P_{2}(x)=x^{2}+x+b_{2}$ we have $P_{1}\left(b_{1}-b_{2}\right)=P_{2}\left(b_{1}-b_{2}\right)$. Therefore, the set of pairwise disjoint polynomials may contain only polynomials of the same form.

Let $P_{1}(x)=x^{2}+b_{1}$ and $P_{2}(x)=x^{2}+b_{2}$. If $b_{1}-b_{2}=2 k+1$ then $P_{1}(k)=P_{2}(k+1)$. If $b_{1}-b_{2}=4 k$ then $P_{1}(k-1)=P_{2}(k+1)$. Therefore, if $P_{1}(x)=x^{2}+b_{1}$ and $P_{2}(x)=x^{2}+b_{2}$ are disjoint then $b_{1}-b_{2}=1,3(\bmod 4)$. Thus there are at most two disjoint polynomials of the form $P(x)=x^{2}+b$.

Let $P_{1}(x)=x^{2}+x+b_{1}$ and $P_{2}(x)=x^{2}+x+b_{2}$. If $b_{1}-b_{2}=2 k$ then $P_{1}(k-1)=P_{2}(k)$. Therefore, if $P_{1}(x)=x^{2}+b_{1}$ and $P_{2}(x)=x^{2}+b_{2}$ are disjoint then $b_{1}-b_{2}=1(\bmod 2)$. Thus there are at most two disjoint polynomials of the form $P(x)=x^{2}+x+b$.

Therefore, the set of pairwise disjoint polynomials may contain only two polynomials.
The polynomials $P_{1}(x)=x^{2}$ and $P_{2}=x^{2}+2$, also the polynomials $P_{1}(x)=x^{2}+x$ and $P_{2}=x^{2}+x+1$ are disjoint. We are done.

