Bilkent University
Department of Mathematics

Problem Of The Month

January 2023

Problem:

Find the maximal possible number of ordered pairs (i, j) satisfying

$$
\frac{a_{i}^{2}}{4}+a_{j} \geq \frac{1}{2022}
$$

where $a_{1}, a_{2}, \ldots, a_{2023}$ are non-negative real numbers satisfying $a_{1}+a_{2}+\ldots+a_{2023}=1$.

Solution: Answer: 2023^{2} - 2023 .
Let us replace 2023 with n and solve the problem for all $n \geq 2$. When $a_{1}=a_{2}=\cdots=$ $a_{n-1}=\frac{1}{n-1}$ and $a_{n}=0$ the total number of pairs satisfying the inequality is $n^{2}-n$.

We will show that for all $a_{1}, a_{2}, \ldots, a_{n}$ are non-negative real numbers satisfying $a_{1}+a_{2}+$ $\ldots+a_{n}=1$ there are at least n pairs with $\frac{a_{i}^{2}}{4}+a_{j}<\frac{1}{n-1}$. Without loss of generality assume that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. Let us consider the pairs

$$
(i, j)=(1, n),(2, n-1), \ldots,(n, 1)
$$

If the the inequality is not held for one of these pairs, say (i, j), then by increasing the indices i and j we get n required pairs also not satisfying the inequality. Now suppose that for all pairs these pairs the inequalities are held:

$$
\frac{a_{1}^{2}}{4}+a_{n} \geq \frac{1}{n-1}, \frac{a_{2}^{2}}{4}+a_{n-1} \geq \frac{1}{n-1}, \ldots, \frac{a_{n}^{2}}{4}+a_{1} \geq \frac{1}{n-1}
$$

Since the sum of the $a_{1}+a_{n}, a_{2}+a_{n-1}, \ldots, a_{n}+a_{1}$ is equal to $2, a_{k}+a_{n+1-k} \leq \frac{2}{n}$ for some k. Let $a_{k}=p$ and $a_{n+1-k}=q$. Then $p+q \leq \frac{2}{n}$ and

$$
\frac{p^{2}}{4}+q \geq \frac{1}{n-1}, \frac{q^{2}}{4}+p \geq \frac{1}{n-1} .
$$

By multiplying these two inequalities we get

$$
\begin{equation*}
\left(\frac{p^{2}}{4}+q\right)\left(\frac{q^{2}}{4}+p\right)=\frac{p^{3}+q^{3}}{4}+\frac{p^{2} q^{2}}{16}+p q \geq \frac{1}{(n-1)^{2}} \tag{1}
\end{equation*}
$$

Since $p+q \leq \frac{2}{n}$ we have $p q \leq \frac{p+q)^{2}}{4} \leq \frac{1}{n^{2}}$ ve $p^{3}+q^{3} \leq(p+q)^{3} \leq \frac{8}{n^{3}}$. Then by using these inequalities in (1) we get

$$
\frac{2}{n^{3}}+\frac{1}{16 n^{4}}+\frac{1}{n^{2}} \geq \frac{1}{(n-1)^{2}}
$$

But since

$$
\frac{2}{n^{3}}+\frac{1}{16 n^{4}}+\frac{1}{n^{2}}<\frac{2}{n^{3}}+\frac{1}{n^{4}}+\frac{1}{n^{2}}=\frac{(n+1)^{2}}{n^{4}}<\frac{1}{(n-1)^{2}}
$$

we get a contradiction with (1). Thus, there are n pairs (i, j) not satisfying $\frac{a_{i}^{2}}{4}+a_{j} \geq$ $\frac{1}{n-1}$. Done.

