Bilkent University
Department of Mathematics

Problem Of The Month

November 2022

Problem:

For each pair (p, a), where p is a prime number and a is a positive integer the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are defined as

$$
\begin{gathered}
a_{1}=a \text { and } a_{n+1}=a_{n}+p\left\lfloor\sqrt[p]{a_{n}}\right\rfloor \\
b_{n}=\sqrt[p]{a_{n}}
\end{gathered}
$$

A pair (p, a) is said to be good if the sequence $\left\{b_{n}\right\}$ contains infinitely many integers. Find all values of p such that all pairs $(p, a), a=1,2, \ldots$ are good.

Solution: Answer: For all primes p all pairs $(p, a), a=1,2, \ldots$ are good.
Let p be a fixed prime number and a be a given positive integer. Let m be a positive integer with $m^{p}>a$. Since the sequence $\left\{a_{n}\right\}$ is increasing the exists a smallest term a_{k} of the sequence $\left\{a_{n}\right\}$ satisfying $a_{k}>m^{p}$. By definitions, $a_{k-1}<m^{p}$ and

$$
a_{k}-a_{k-1}=p\left\lfloor\sqrt[p]{a_{k-1}}\right\rfloor<p m .
$$

Therefore, $a_{k}=m^{p}+r$, where $r<p m$. Let us show that along with $a_{k}=m^{p}+r$ the number $(m+1)^{p}+r-1$ is also an element of the sequence $\left\{a_{n}\right\}$. Indeed, since p is a prime number the difference

$$
\left((m+1)^{p}+r-1\right)-\left(m^{p}+r\right)=\binom{p}{p-1} m^{p-1}+\binom{p}{p-2} m^{p-2}+\cdots+\binom{p}{1} m
$$

is a multiple of $p m$. Therefore, the smallest term a_{l} of the sequence $\left\{a_{n}\right\}$ satisfying $a_{l}>(m+1)^{p}$ has a form $a_{l}=(m+1)^{p}+r-1$. By applying this argument repeatedly one can show that the sequence $\left\{a_{n}\right\}$ contains terms $(m+2)^{p}+r-2,(m+3)^{p}+r-$ $3, \ldots,(m+r-1)^{p}+1$ and finally the term $a_{t}=(m+r)^{p}$. Thus, $b_{t}=m+r$ is an integer. By choosing sparsely located distinct numbers m we can get infinitely many integer terms of $\left\{b_{n}\right\}$.

