Problem Of The Month

September 2022

Problem:

For a given positive integer n, let $f(n)$ be the smallest positive number which can be expressed as

$$
\frac{a b}{a+b}-n
$$

where a and b are positive integers. Find a closed form for $f(n)$ as a function of n.

Solution: Answer: $\frac{1}{(n+1)^{2}+1}$.
Let us rewrite the condition $\frac{a b}{a+b}-n>0$ as $a b=(a+b) n+m$, where m is a positive integer. Equivalently,

$$
(a-n)(b-n)=n^{2}+m
$$

which implies that $a>n, b>n$. Let $a-n=s$ and $b-n=t$. Then we have

$$
\begin{align*}
& s t=n^{2}+m \tag{1}\\
& s+t \leq 1+s t=1+n^{2}+m \tag{2}
\end{align*}
$$

Therefore by using (1) we get

$$
\begin{equation*}
\frac{a b}{a+b}=\frac{n^{2}+s t+n(s+t)}{2 n+s+t}=\frac{n^{2}+n^{2}+m+n(s+t)}{2 n+s+t}=n+\frac{m}{2 n+s+t} \tag{3}
\end{equation*}
$$

and by using (2) in (3) we get

$$
\begin{equation*}
\frac{a b}{a+b}=n+\frac{m}{2 n+n^{2}+1+m} . \tag{4}
\end{equation*}
$$

Finally, since for all positive integers L we have $\frac{m}{L+m} \geq \frac{1}{L+1}$, (4) yields

$$
\frac{a b}{a+b}-n \geq \frac{1}{(n+1)^{2}+1}
$$

The equality holds at $a=n+1, b=n^{2}+n+1$.

