

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2019

Problem:

Let p > 2 be a prime number, m > 1 and n be positive integers such that

$$\frac{m^{pn}-1}{m^n-1}$$

is a prime number. Show that

$$pn \mid (p-1)^n + 1.$$

Solution:

We first show that n is a power of p. Let $n = p^k t$ where $k \ge 0$ and $t \ge 1$ are integers and p does not divide t. Let $M = m^{p^k}$. By the assumption in the problem $M^{pt} - 1 = (M^t - 1)q$ for some prime number q. Recall that $(M^a - 1, M^b - 1) = M^{(a,b)} - 1$ for all positive integers a and b, and therefore we get $(M^p - 1, M^t - 1) = M - 1$. Since both $M^p - 1$ and $M^t - 1$ divide $M^{pt} - 1$ we see that $\frac{(M^p - 1)(M^t - 1)}{M - 1}$ divides $M^{pt} - 1$. In other words, $\frac{M^p - 1}{M - 1}$ divides $\frac{M^{pt} - 1}{M^t - 1} = q$. Then, $\frac{M^p - 1}{M - 1}$ is either 1 or q. Clearly it is not 1, and hence it is q so we get t = 1. Now since p is an odd prime number, the statement $p^{k+1} | (p-1)^{p^k} + 1$ readily follows from the binomial expansion of $(p-1)^{p^k}$.