Problem Of The Month

September 2019

Problem:

Let $p>2$ be a prime number, $m>1$ and n be positive integers such that

$$
\frac{m^{p n}-1}{m^{n}-1}
$$

is a prime number. Show that

$$
p n \mid(p-1)^{n}+1 .
$$

Solution:

We first show that n is a power of p. Let $n=p^{k} t$ where $k \geq 0$ and $t \geq 1$ are integers and p does not divide t. Let $M=m^{p^{k}}$. By the assumption in the problem $M^{p t}-1=\left(M^{t}-1\right) q$ for some prime number q. Recall that $\left(M^{a}-1, M^{b}-1\right)=M^{(a, b)}-1$ for all positive integers a and b, and therefore we get $\left(M^{p}-1, M^{t}-1\right)=M-1$. Since both $M^{p}-1$ and $M^{t}-1$ divide $M^{p t}-1$ we see that $\frac{\left(M^{p}-1\right)\left(M^{t}-1\right)}{M-1}$ divides $M^{p t}-1$. In other words, $\frac{M^{p}-1}{M-1}$ divides $\frac{M^{p t}-1}{M^{t}-1}=q$. Then, $\frac{M^{p}-1}{M-1}$ is either 1 or q. Clearly it is not 1 , and hence it is q so we get $t=1$. Now since p is an odd prime number, the statement $p^{k+1} \mid(p-1)^{p^{k}}+1$ readily follows from the binomial expansion of $(p-1)^{p^{k}}$.

