

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2018

Problem:

Show that for each pair of positive integers (a, b) there is a positive integer n such that $n^2 + an + b$ has at least 2018 distinct prime divisors.

Solution:

By induction over k we will prove that for each pair of positive integers (a, b) there is a positive integer n such that $n^2 + an + b$ has at least k distinct prime divisors. The case k = 1 is obvious. For given (a, b) suppose that for some $n_k n_k^2 + an_k + b$ has k distinct prime divisors p_1, p_2, \ldots, p_k . Then $p_1 p_2 \ldots p_k$ divides $m = n_k^2 + an_k + b$. Let us define $n_{k+1} = n_k(m^2 + 1)$. Then

$$n_{k+1}^2 + an_{k+1} + b = n_k^2 (m^2 + 1)^2 + an_k (m^2 + 1) + b$$
$$= n_k^2 (m^4 + 2m^2 + 1) + an_k (m^2 + 1) + b = n_k^2 m^4 + 2m^2 n_k^2 + an_k m^2 + m$$
$$= m(n_k^2 m^3 + 2mn_k^2 + an_k m + 1).$$

The last expression is divisible by p_1, p_2, \ldots, p_k and some another prime number p_{k+1} since m and $n_k^2 m^3 + 2mn_k^2 + an_k m + 1$ are relatively prime. The inductive hypothesis for k + 1 is proved. Done.