

Bilkent University
Department of Mathematics

Problem Of The Month

September 2018

Problem:

Show that for each pair of positive integers (a, b) there is a positive integer n such that $n^{2}+a n+b$ has at least 2018 distinct prime divisors.

Solution:

By induction over k we will prove that for each pair of positive integers (a, b) there is a positive integer n such that $n^{2}+a n+b$ has at least k distinct prime divisors. The case $k=1$ is obvious. For given (a, b) suppose that for some $n_{k} n_{k}^{2}+a n_{k}+b$ has k distinct prime divisors $p_{1}, p_{2}, \ldots, p_{k}$. Then $p_{1} p_{2} \ldots p_{k}$ divides $m=n_{k}^{2}+a n_{k}+b$. Let us define $n_{k+1}=n_{k}\left(m^{2}+1\right)$. Then

$$
\begin{gathered}
n_{k+1}^{2}+a n_{k+1}+b=n_{k}^{2}\left(m^{2}+1\right)^{2}+a n_{k}\left(m^{2}+1\right)+b \\
=n_{k}^{2}\left(m^{4}+2 m^{2}+1\right)+a n_{k}\left(m^{2}+1\right)+b=n_{k}^{2} m^{4}+2 m^{2} n_{k}^{2}+a n_{k} m^{2}+m \\
=m\left(n_{k}^{2} m^{3}+2 m n_{k}^{2}+a n_{k} m+1\right)
\end{gathered}
$$

The last expression is divisible by $p_{1}, p_{2}, \ldots, p_{k}$ and some another prime number p_{k+1} since m and $n_{k}^{2} m^{3}+2 m n_{k}^{2}+a n_{k} m+1$ are relatively prime. The inductive hypothesis for $k+1$ is proved. Done.

