Bilkent University Department of Mathematics

Problem Of The Month

June 2018

Problem:

In the round robin chess tournament organized in a school every two students played one match among themselves. Find the minimal possible number of students in the school if each girl student has at least a wins in matches against boy students and each boy student has at least b wins in matches against girl students.

Solution: The answer is $a+b+\lceil 2 \sqrt{a b}\rceil$.
Suppose that x girl and y boy students participated in the tournament. Obviously $x y \geq a x+b y$ is a necessary condition for the existence of the tournament with given conditions. Let us show that this inequality is also a sufficient condition for the existence of the tournament. Let us consider $x \times y$ score table of the tournament. We put 1 (alternatively $\mathbf{0}$) in the intersection of $m-t h$ row and $n-t h$ column if $m-t h$ girl wins (alternatively loses) the match with $n-t h$ boy. Let us prove that there is a table in which each row contains at least a entries $\mathbf{1}$ and each column contains at least b entries $\mathbf{0}$. We start with the table where each entry of the first a columns is $\mathbf{1}$ and each other entry is $\mathbf{0}$ and step by step move to the table satisfying the conditions. Suppose that $k-t h$ column contains less than $b \mathbf{0}$'s. Since the total number of $\mathbf{0}$'s is not less than by then some l - th column should contain more than $b \mathbf{0}$'s. In this case we choose a row such that the intersection of this row with $k-t h$ and $l-t h$ columns are $\mathbf{1}$ and $\mathbf{0}$, respectively and switch these two entries. After each move some column with $\mathbf{0}$ shortage gains one $\mathbf{0}$ and the total number of $\mathbf{1}$ entries of each row does not change. Therefore after finite number of moves we will get the desired table. Done.

Now let us find the minimal value of $x+y$. The inequality $x y \geq a x+b y$ is equivalent to

$$
\begin{equation*}
(x-b)(y-a) \geq a \cdot b \tag{1}
\end{equation*}
$$

By AM-GM inequality we get

$$
(x-b)+(y-a) \geq 2 \sqrt{(x-b)(y-a)} \geq 2 \sqrt{a \cdot b}
$$

Thus, $x+y \geq a+b+\lceil 2 \sqrt{a b}\rceil$. Let us find x and y satisfying $x+y=a+b+\lceil 2 \sqrt{a b}\rceil$. If $\lceil 2 \sqrt{a b}\rceil=2 k$ is even then $x=b+k$ and $y=a+k$ will satisfy (1). Indeed, $(x-b)(y-a)=k^{2} \geq 4 a b / 4=a b$.

If $\lceil 2 \sqrt{a b}\rceil=2 k+1$ is odd then $x=b+k$ and $y=a+k+1$ will satisfy (1). Indeed, $(x-b)(y-a)=k(k+1) \geq 4 a b / 4-1 / 4$ and since $k(k+1)$ is an integer $k(k+1) \geq a b$. Done.

