

Bilkent University
Department of Mathematics

Problem Of The Month

September 2017

Problem:

Let n be a positive integer and $\phi(n)$ be the number of positive integers less than n that are relatively prime to n. Find all pairs of positive integers (m, n) satisfying

$$
2^{n}+(n-\phi(n)-1)!=n^{m}+1
$$

Solution: Answer: $(m, n)=(2,2),(2,4)$.
If $n=1$ then we get $2+1=2$. Therefore, $n>1$.
If n is a prime number, then $\phi(n)=n-1$ and $2^{n}=n^{m}$. Therefore, $m=n=2$.
If $n=p^{2}$, where p is a prime number, then $\phi(n)=p^{2}-p$ and we get $2^{p^{2}}+(p-1)!=p^{2 m}+1$. For $p=2$ we get $m=2$. For $p>2$ we have $(p-1)!\equiv 2(\bmod 4)$ which yields $p=3$. But $2^{9}+2=514=3^{2 m}+1$ has no solution.

In all other cases let p be the smallest prime factor of n. Since $1<p<2 p<\cdots<p^{2}<n$, we have $n-1-\phi(n) \geq p$ and therefore p divides $(n-\phi(n)-1)$! Thus, p divides $2^{n}-1$ and p is odd. By Fermat's little theorem p also divides $2^{p-1}-1$. Since n and $p-1$ are coprime for some integers a and b we have $a n-b(p-1)=1$. Then

$$
1 \equiv 2^{n} \equiv 2^{a n} \equiv 2^{1+b(p-1)} \equiv 2 \cdot 2^{b(p-1)} \equiv 2 \quad(\bmod p)
$$

This contradiction shows that there is no any other solution.

