Bilkent University
Department of Mathematics

Problem Of The Month

May 2017

Problem:

Find all triples (m, n, p) satisfying

$$
\left(m^{3}+n\right)\left(n^{3}+m\right)=p^{3}
$$

where m, n are positive integers and p is a prime number.

Solution: Answer: $(m, n, p)=(2,1,3),(1,2,3)$.
If $m=n$ then $n^{2}\left(n^{2}+1\right)=p^{3}$. Since $\operatorname{gcd}\left(n^{2}, n^{2}+1\right)=1$ and p is prime we get $n=1$, no solution.

Let $m>n \geq 1$. Since $n^{3}+m \geq 2$ we get $m^{3}+n=p^{2}(\dagger), n^{3}+m=p(\ddagger)$.
If $n=1$ then $p^{2}=\left(m^{3}+1\right)=(m+1)\left(m^{2}-m+1\right)$ and $m+1=p$. Therefore, $m^{2}-m+1=p=m+1, m=2$. Thus, we have a solution $m=2, n=1, p=3$.

If $n>1$ then $p=n^{3}+m>m+n$ and therefore $p \nmid m+n$ and $p \nmid m-n$. Adding and subtracting of (\dagger) and (\ddagger) we get

$$
(m+n)\left(m^{2}-m n+n^{2}+1\right)=p(p+1) \quad(m-n)\left(m^{2}+m n+n^{2}-1\right)=p(p-1)
$$

Since $p \nmid m+n$ and $p \nmid m-n$ we get $p \mid m^{2}-m n+n^{2}+1$ and $p \mid m^{2}+m n+n^{2}-1$. Therefore $p \mid\left(m^{2}+m n+n^{2}-1\right)-\left(m^{2}-m n+n^{2}+1\right)=2(m n-1)$. If $p=2$ then $m=n=1$, no solution. Therefore, $p \mid m n-1$ and $p \leq m n-1$. Now since $n^{3}+n<n^{3}+m=p \leq m n-1<m n$ we get $n^{3}+n<m n$ and $n^{2}+1<m$. Thus, $n^{2}<m$. Since $p \leq m n-1$ we get $p^{2} \leq m^{2} n^{2}-2 m n+1$. Therefore, $m^{3}+n=p^{2} \leq m^{2} n^{2}-2 m n+1$. Since $n^{2}<m$ we get $m^{2} n^{2}-2 m n+1<m^{3}-2 m n+1$. Then $m^{3}+n<m^{3}-2 m n+1$ and consequently $2 m n+n<1$, a contradiction.

The case $n>m \geq 1$ similarly yields the solution $n=2, m=1, p=3$.

