Problem:

Let \(d(n) \) be the smallest prime divisor of integer \(n \not\in \{0, -1, +1\} \). Determine all polynomials \(P(x) \) with integer coefficients satisfying

\[
P(n + d(n)) = n + d(P(n))
\]

for all integers \(n > 2014 \) for which \(P(n) \not\in \{0, -1, +1\} \).

Solution:

The answer: \(P(x) = x, P(x) \equiv 1, 0, -1 \).

We start with the case when \(\text{deg}(P(x)) \geq 2 \). Let us take \(n = q \), where \(q \) is prime: \(P(q + d(q)) = q + d(P(q)) \) yields \(P(2q) = q + d(P(q)) \). Therefore, \(|P(2q)| \leq q + |P(q)| \) and

\[
\frac{|P(2q)|}{|P(q)|} \leq q + 1 \quad (\dagger)
\]

Now when \(q \) increases the left hand side of (\dagger) goes to \(2^{\text{deg}(P(x))} \), but right hand side goes to 1. Contradiction.

Now let \(\text{deg}(P(x)) = 1 \) and \(P(x) = bx + c \). Then again for \(n = q \) we get \(2bq + c = q + d(bq + c) \) and \((2b - 1)q + c = d(bq + c) \). If \(q \) is sufficiently large we get that \(b \geq 1 \) and \((2b - 1)q + c \leq bq + c \) which in turn yields \(b = 1 \). Thus, \(n + d(n) + c = n + d(n + c) \) and
\[d(n) + c = d(n + c) \quad (††) \]

If \(c > 0 \) then for \(n = 2^l - c \) the left hand side of (††) is at least 3, while the right hand side of (††) is 2.

If \(c < 0 \) then for \(n = 2^l \) the left hand side of (††) is at most 1, while the right hand side of (††) is at least 2.

Thus, \(c = 0 \) and \(P(x) = x \).

If \(\text{deg}(P(x)) = 0 \) then for \(c \neq 0, \pm 1 \) we get \(c = n + d(c) \), a contradiction.