Bilkent University Department of Mathematics

Problem Of The Month

September 2006

Problem: Suppose that a natural number n is an odd perfect number: n is odd and n is equal to the sum of all its positive divisors (including 1 and excluding n). Prove that n is not divisible by 105 .

Note: The existence of any odd perfect number is still unknown.

Solution: Suppose that n is divisible by $105=3 \times 5 \times 7$. Consider the prime factorization of n :

$$
n=3^{\alpha_{1}} 5^{\alpha_{2}} 7^{\alpha_{3}} p_{4}^{\alpha_{4}} \ldots p_{k}^{\alpha_{k}}, \alpha_{1} \geq 1, \alpha_{2} \geq 1, \alpha_{3} \geq 1
$$

Let $S(n)$ be the sum of all positive divisors of n (including 1 and n):
$S(n)=n\left(1+\frac{1}{3}+\cdots+\frac{1}{3^{\alpha_{1}}}\right)\left(1+\frac{1}{5}+\cdots+\frac{1}{5^{\alpha_{2}}}\right)\left(1+\frac{1}{7}+\cdots+\frac{1}{7^{\alpha_{3}}}\right)\left(1+\frac{1}{p_{4}}+\cdots+\frac{1}{p_{4}^{\alpha_{4}}}\right) \ldots\left(1+\frac{1}{p_{k}}+\cdots+\frac{1}{p_{k}^{\alpha_{k}}}\right)$.
Since n is an odd perfect number $S(n)=2 n$ and $S(n)$ is not divisible by 4 . Since all primes in the decomposition of n are odd, α_{1} and α_{3} are at least 2 , otherwise $\left(1+\frac{1}{3}+\cdots+\frac{1}{3^{\alpha_{1}}}\right)=\frac{4}{3}$ and $\left(1+\frac{1}{7}+\cdots+\frac{1}{7^{\alpha_{3}}}\right)=\frac{8}{7}$ and $S(n)$ is divisible by 4 . Finally,

$$
2=\frac{S(n)}{n} \geq\left(1+\frac{1}{3}+\frac{1}{3^{2}}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}+\frac{1}{7^{2}}\right)=\frac{13}{9} \frac{6}{5} \frac{57}{49}=\frac{4446}{2205}>2
$$

Contradiction.

