Bilkent University, Department of Physics

PHYS 453: Nuclear \& Particle Physics

First Midterm Examination

1. (20 points) A particle travelling at speed u approaches an identical particle at rest (in the Lab frame).
a) Show that the speed of each particle in the CM frame is $\frac{c^{2}}{u}\left(1-\sqrt{1-\frac{u^{2}}{c^{2}}}\right)$,
b) Work out the non-relativistic limit of part (a).
2. (15 points) An atom of mass m is at rest in the Lab frame. It emits a photon of frequency ν after which it suffers a recoil while its mass reduces to $m-\delta m$. Show that

$$
h \nu=c^{2} \delta m\left(1-\frac{\delta m}{2 m}\right) .
$$

3. (15 points) If a quark, which is spin- $1 / 2$, is in the p orbital angular momentum state (i.e., $L=1$),
a) What are the possible values for total angular momenta and their z-components, | $J M\rangle$?
b) If this quark is in the total angular momentum state of $+1 / 2$, with its z-projection $-1 / 2$, What values might we get for the measurement of the z-component of the orbital angular momentum, L_{z}, and with what probabilities for each?
NB: All angular momenta are specified in units of \hbar.

Some Information (may or may not be useful):

- For $x \ll 1,(1+x)^{a} \simeq 1+a x$.
- $v_{A C}=\frac{v_{A B}+v_{B C}}{1+\frac{A B}{c^{\circ} B C}}$
- $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \beta=\frac{v}{c}$
- For massive particles, $p_{\mu} p^{\mu}=m^{2} c^{2}, p_{\mu}=\left(\frac{E}{c}, \vec{p}\right), \vec{p}=\gamma m \vec{v}$
- For massless particles, $E=|\vec{p}| c$
- Flip the page for the Clebsch-Gordan coefficient Table

36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15$ read $-\sqrt{8 / 15}$.

$$
\begin{aligned}
& \text { Notation: } \\
& \cline { 2 - 4 } \begin{array}{|cccc|}
\hline m_{1} & m_{2} & J & \ldots \\
M & M & \ldots \\
m_{1} & m_{2} & \text { Coefficients } \\
\vdots & \vdots & \\
\hline & & \\
\hline
\end{array}
\end{aligned}
$$

$d_{3 / 2,3 / 2}^{3 / 2}=\frac{1+\cos \theta}{2} \cos \frac{\theta}{2}$
$d_{3 / 2,1 / 2}^{3 / 2}=-\sqrt{3} \frac{1+\cos \theta}{2} \sin \frac{\theta}{2} \quad d_{2,2}^{2}=\left(\frac{1+\cos \theta}{2}\right)^{2}$
$d_{3 / 2,-1 / 2}^{3 / 2}=\sqrt{3} \frac{1-\cos \theta}{2} \cos \frac{\theta}{2}$
$d_{2,1}^{2}=-\frac{1+\cos \theta}{2} \sin \theta$
$d_{2,0}^{2}=\frac{\sqrt{6}}{4} \sin ^{2} \theta$
$d_{2,-1}^{2}=-\frac{1-\cos \theta}{2} \sin \theta$
$d_{1,1}^{2}=\frac{1+\cos \theta}{2}(2 \cos \theta-1)$
$d_{3 / 2,-3 / 2}^{3 / 2}=-\frac{1-\cos \theta}{2} \sin \frac{\theta}{2}$
$d_{1,0}^{2}=-\sqrt{\frac{3}{2}} \sin \theta \cos \theta$
$d_{1 / 2,1 / 2}^{3 / 2}=\frac{3 \cos \theta-1}{2} \cos \frac{\theta}{2}$
$d_{2,-2}^{2}=\left(\frac{1-\cos \theta}{2}\right)^{2}$
$d_{1,-1}^{2}=\frac{1-\cos \theta}{2}(2 \cos \theta+1) \quad d_{0,0}^{2}=\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)$

Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

$$
\begin{aligned}
& Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& Y_{2}^{0}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
& Y_{2}^{1}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
& Y_{2}^{2}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi}
\end{aligned}
$$

