Bilkent University, Department of Physics

PHYS 453: Nuclear \& Particle Physics

Fourth Homework

Due Date: 6 April 2012

1. Using for the Dirac equation, the Hamiltonian $H=c \gamma^{0}(\vec{\gamma} \cdot \vec{p}+m c)$, where $\vec{p} \equiv \frac{\hbar}{i} \nabla$ is the momentum operator:
a) Show that orbital angular momentum operator $\vec{L} \equiv \vec{r} \times \vec{p}$ does not commute with H. That means, \vec{L} itself is not conserved. So, there must be some unaccounted angular momentum.
b) Show that $[H, \vec{J}]=0$, where \vec{J} is the total angular momentum $\vec{J}=\vec{L}+\vec{S}$, with $\vec{S}=\frac{\hbar}{2}\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$.
c) Show that every bispinor is an eigenstate of \vec{S}^{2}, with eigenvalue $\hbar^{2} s(s+1)$, and find s. What then is the spin of a particle described by the Dirac equation?
2. The charge conjugation operator (C) takes a Dirac spinor ψ into the 'charge conjugate' spinor ψ_{c}, given by

$$
\psi_{c}=i \gamma^{2} \psi^{*}
$$

where γ^{2} is the third Dirac matrix. Show that the charge conjugates of plane-wave solutions $u^{(1)}$ and $u^{(2)}$ are $v^{(1)}$ and $v^{(2)}$.
3. Suppose we apply a gauge transformation $A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \lambda$, using the gauge function $\lambda=i \hbar \kappa a e^{-(i / \hbar) p \cdot x}$, where κ is an arbitrary constant and p is the photon momentum. a) Show that this λ satisfies, $\square \lambda=0$.
b) Show that this gauge transformation has the effect of modifying $\epsilon_{\mu}: \epsilon_{\mu} \rightarrow \epsilon_{\mu}+\kappa p_{\mu}$. This observation leads to a beautifully simple test for the gauge invariance of the QED results: the answer must be unchanged if you replace ϵ_{μ} by $\epsilon+\kappa p_{\mu}$.

