Bilkent University, Department of Physics

PHYS 453: Nuclear & Particle Physics

Fourth Homework

Due Date: 6 April 2012

1. Using for the Dirac equation, the Hamiltonian $H = c\gamma^0 (\vec{\gamma} \cdot \vec{p} + mc)$, where $\vec{p} \equiv \frac{\hbar}{i} \nabla$ is the momentum operator:

a) Show that orbital angular momentum operator $\vec{L} \equiv \vec{r} \times \vec{p}$ does not commute with H. That means, \vec{L} itself is not conserved. So, there must be some unaccounted angular momentum.

b) Show that $[H, \vec{J}] = 0$, where \vec{J} is the total angular momentum $\vec{J} = \vec{L} + \vec{S}$, with $\vec{S} = \frac{\hbar}{2} \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$.

c) Show that every bispinor is an eigenstate of \vec{S}^2 , with eigenvalue $\hbar^2 s(s+1)$, and find s. What then is the spin of a particle described by the Dirac equation?

2. The charge conjugation operator (C) takes a Dirac spinor ψ into the 'charge conjugate' spinor ψ_c , given by

$$\psi_c = i\gamma^2\psi^*$$

where γ^2 is the third Dirac matrix. Show that the charge conjugates of plane-wave solutions $u^{(1)}$ and $u^{(2)}$ are $v^{(1)}$ and $v^{(2)}$.

3. Suppose we apply a gauge transformation A'_μ = A_μ + ∂_μλ, using the gauge function λ = iħκae^{-(i/ħ)p·x}, where κ is an arbitrary constant and p is the photon momentum.
a) Show that this λ satisfies, □λ = 0.

b) Show that this gauge transformation has the effect of modifying $\epsilon_{\mu} : \epsilon_{\mu} \to \epsilon_{\mu} + \kappa p_{\mu}$. This observation leads to a beautifully simple test for the gauge invariance of the QED results: the answer must be unchanged if you replace ϵ_{μ} by $\epsilon + \kappa p_{\mu}$.