Bilkent University, Department of Physics

PHYS 453: Nuclear & Particle Physics

Second Homework

Due Date: 9 March 2012

1. The Cartesian components of the spin operator for spin-1 are given as:

[0	0	0 -		0	0	i		0	-i	0	1
$S_x = \hbar$	0	0	-i	$, S_y = \hbar$	0	0	0	$, S_z = \hbar$	i	0	0	.
	0	i	0		-i	0	0		0	0	0	

Determine the corresponding eigenvalues and eigenvectors of each spin component.

- 2. For two particles of spin-2 and spin-3/2, if their orbital angular momenta are zero, and the total spin of the composite system is 5/2, with its z-component being -1/2, then what values are possible for a measurement of S_z on the spin-2 particle? What is the probability of each?
- 3. For the Pauli spin matrices: (here, I is a 2×2 identity matrix)
 - a) Show that $\sigma_i \sigma_j = I \delta_{ij} + i \epsilon_{ijk} \sigma_k$, where ϵ_{ijk} is the Levi-Civita symbol,
 - b) using part (a) show that the commutator: $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$,
 - c) show the anticommutator: $\{\sigma_i, \sigma_j\} = 2I\delta_{ij}$,
 - d) for any two vectors \vec{a} and \vec{b} , show that $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = (\vec{a} \cdot \vec{b})I + i\vec{\sigma} \cdot (\vec{a} \times \vec{b}).$
- 4. Nuclear physicists traditionally work with 'half-life' $(t_{1/2})$ instead of the mean lifetime (τ) ; $t_{1/2}$ is the time it takes for half of the members of a large sample to decay. For exponential decay, derive the formula for $t_{1/2}$ as multiple of τ .