Bilkent University, Department of Physics

PHYS 453: Nuclear \& Particle Physics

Second Homework

Due Date: 9 March 2012

1. The Cartesian components of the spin operator for spin-1 are given as:

$$
S_{x}=\hbar\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right], S_{y}=\hbar\left[\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right], S_{z}=\hbar\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Determine the corresponding eigenvalues and eigenvectors of each spin component.
2. For two particles of spin- 2 and spin- $3 / 2$, if their orbital angular momenta are zero, and the total spin of the composite system is $5 / 2$, with its z-component being $-1 / 2$, then what values are possible for a measurement of S_{z} on the spin-2 particle? What is the probability of each?
3. For the Pauli spin matrices: (here, I is a 2×2 identity matrix)
a) Show that $\sigma_{i} \sigma_{j}=I \delta_{i j}+i \epsilon_{i j k} \sigma_{k}$, where $\epsilon_{i j k}$ is the Levi-Civita symbol,
b) using part (a) show that the commutator: $\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}$,
c) show the anticommutator: $\left\{\sigma_{i}, \sigma_{j}\right\}=2 I \delta_{i j}$,
d) for any two vectors \vec{a} and \vec{b}, show that $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=(\vec{a} \cdot \vec{b}) I+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})$.
4. Nuclear physicists traditionally work with 'half-life' $\left(t_{1 / 2}\right)$ instead of the mean lifetime $(\tau) ; t_{1 / 2}$ is the time it takes for half of the members of a large sample to decay. For exponential decay, derive the formula for $t_{1 / 2}$ as multiple of τ.

