1) (25 points) Multi-electron \(g \)-factor
For the state with \(LS \) term symbol \(^3P_2\), calculate its \(g \)-factor and sketch the shifts of all magnetic sublevels as a function of external magnetic field, \(B \).

2) (35 points) Three-Level Rate Equations
Erbium-doped fiber amplifier operating at the 1.55 \(\mu \)m wavelength is based on the atomic transitions within the three levels (shown on the right) of the \(\text{Er}^{3+} \) ion embedded, say in silica fiber. Resonant with the \(|1\rangle \leftrightarrow |3\rangle\) transition, a pump \(I_p \) is present, and the main (laser) signal \(I_s \) originates from the \(|2\rangle \leftrightarrow |1\rangle\) transition. Assume that a non-radiative decay governed by the rate \(\Gamma_{NR} \) is also present as shown on the right. To study the population dynamics, using Einstein \(A \) and \(B \) coefficients (assumed to be state-independent) accompanying relevant transitions:

(a) Obtain the population rate equations for all three levels, \(n_1(t), n_2(t), n_3(t) \), with \(n_1(t) + n_2(t) + n_3(t) = 1 \), i.e., normalized to total population.

(b) Next, assuming that the non-radiative rate is much faster, redo part (a) for \(n_3(t) \sim 0 \).

(c) Obtain the expression for the steady-state value of \(n_2 \) for part (b).

(d) The \(LS \) term symbols are also specified in the Figure. Do you realize something bizarre regarding optical transitions? (+10 points bonus, if you also have an explanation for it)

3) (40 points) Two-Level Rabi Oscillations
A two-level system having an energy separation \(\hbar \omega_0 = E_e - E_g \) is illuminated with a (classical) electric field \(F_0 \cos \omega t \), with a detuning \(\Delta \equiv \omega_0 - \omega \). We can write the wave function of the atom as \(|\psi(t)\rangle = C_g(t)e^{-iE_g t/\hbar}|g\rangle + C_e(t)e^{-iE_e t/\hbar}|e\rangle \). Within the electric dipole coupling described by the parameter \(V \equiv -\langle e|\vec{d}|g\rangle \cdot \vec{F}_0 \) (you can take \(V^* = V \)), generalized Rabi frequency \(\Omega_R \equiv \sqrt{\Delta^2 + V^2/\hbar^2} \), and neglecting the spontaneous emission term:

(a) Obtain the coupled differential equations satisfied by \(C_g(t), C_e(t) \).

(b) Next, applying the so-called rotating wave approximation (RWA) which amounts to discarding the rapidly oscillating terms \(e^{\pm i(\omega + \omega_0)t} \), simplify your expressions in (a).

(c) Solve for \(C_e(t) \) within RWA subject to \(C_g(0) = 1, C_e(0) = 0 \).