1] (25 pts)
A resistor is in the shape of a spherical shell, with an inside surface of radius of a covered with a conducting material and an outside surface of b covered with a conducting material. Assuming a uniform resistivity ρ calculate the resistance between the conducting surfaces.

2] (25 pts)
Determine the capacitance per unit length of the semi-cylindrical structure with inner radius a and outer radius b, with dielectric regions of ε_{1} and ε_{2} as shown in the figure. (Neglect the fringe fields.)

3] (25 pts)

At time $t=0$, the switch S_{1} is closed and later at $t=10 \mathrm{~ms}$ the switch S_{2} is thrown from position A to B . Using the capacitor voltage and currents shown on the right, determine the numerical values of $\varepsilon, R_{1}, R_{2}$, and C. (Get the right numerical values, no partial credits!)

$$
\xrightarrow[-2.5]{5}
$$

4] (25 pts)

Figure on the right shows an arrangement used to measure the masses of ions. An ion of mass m and charge $+q$ is produced esentially at rest in source S , a chamber in which gas discharge is taking place. The ion is acclereated by potential difference ΔV and allowed to enter a magnetic field \mathbf{B}. In the field it moves in a semicircle striking a photographic plate at distance x from the entry slit. Determine the ion mass m in terms of $x, q, \mathrm{~B}, \Delta V$.
(Derive all relations you use.)

