MIDTERM-II

Duration: 90 minutes

1] (25 pts)

A resistor is in the shape of a spherical shell, with an inside surface of radius of a covered with a conducting material and an outside surface of b covered with a conducting material. Assuming a uniform resistivity ρ calculate the resistance between the conducting surfaces.

2] (25 pts)

Determine the <u>capacitance per unit length</u> of the semi-cylindrical structure with inner radius *a* and outer radius *b*, with dielectric regions of ε_1 and ε_2 as shown in the figure. (Neglect the fringe fields.)

26 April 2007

3] (25 pts)

At time t=0, the switch S_1 is closed and later at t=10 ms the switch S_2 is thrown from position A to B. Using the capacitor voltage and currents shown on the right, determine the numerical values of \mathcal{E} , R_1 , R_2 , and *C*. (*Get the right numerical values, no partial credits!*)

4] (25 pts)

Figure on the right shows an arrangement used to measure the masses of ions. An ion of mass *m* and charge +q is produced esentially at rest in source S, a chamber in which gas discharge is taking place. The ion is acclereated by potential difference ΔV and allowed to enter a magnetic field **B**. In the field it moves in a semicircle striking a photographic plate at distance *x* from the entry slit. Determine the ion mass *m* in terms of *x*, *q*, B, ΔV .

(Derive all relations you use.)

