P29-5 (a) The time it takes to complete one turn is $t=(250 \mathrm{~m}) / c$. The total charge is

$$
q=i t=(30.0 \mathrm{~A})(950 \mathrm{~m}) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=9.50 \times 10^{-5} \mathrm{C}
$$

(b) The number of charges is $N=q / e$, the total energy absorbed by the block is then

$$
\Delta U=\left(28.0 \times 10^{9} \mathrm{eV}\right)\left(9.50 \times 10^{-5} \mathrm{C}\right) / e=2.66 \times 10^{6} \mathrm{~J}
$$

This will raise the temperature of the block by

$$
\Delta T=\Delta U / m C=\left(2.66 \times 10^{6} \mathrm{~J}\right) /(43.5 \mathrm{~kg})\left(385 \mathrm{~J} / \mathrm{kgC}^{\circ}\right)=159 \mathrm{C}^{\circ} .
$$

P29-6 (a) $i=\int j d A=2 \pi \int j r d r ;$

$$
i=2 \pi \int-0^{R} j_{0}(1-r / R) r d r=2 \pi j_{0}\left(R^{2} / 2-R^{3} / 3 R\right)=\pi j_{0} R^{2} / 6
$$

(b) Integrate, again:

$$
i=2 \pi \int-0^{R} j_{0}(r / R) r d r=2 \pi j_{0}\left(R^{3} / 3 R\right)=\pi j_{0} R^{2} / 3
$$

P29-15 The current is found from Eq. 29-5,

$$
i=\int \overrightarrow{\mathbf{j}} \cdot d \overrightarrow{\mathbf{A}},
$$

where the region of integration is over a spherical shell concentric with the two conducting shells but between them. The current density is given by Eq. 29-10,

$$
\overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{E}} / \rho
$$

and we will have an electric field which is perpendicular to the spherical shell. Consequently,

$$
i=\frac{1}{\rho} \int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{1}{\rho} \int E d A
$$

By symmetry we expect the electric field to have the same magnitude anywhere on a spherical shell which is concentric with the two conducting shells, so we can bring it out of the integral sign, and then

$$
i=\frac{1}{\rho} E \int d A=\frac{4 \pi r^{2} E}{\rho}
$$

where E is the magnitude of the electric field on the shell, which has radius r such that $b>r>a$.
The above expression can be inverted to give the electric field as a function of radial distance, since the current is a constant in the above expression. Then $E=i \rho / 4 \pi r^{2}$ The potential is given by

$$
\Delta V=-\int_{b}^{a} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}},
$$

we will integrate along a radial line, which is parallel to the electric field, so

$$
\begin{aligned}
\Delta V & =-\int_{b}^{a} E d r \\
& =-\int_{b}^{a} \frac{i \rho}{4 \pi r^{2}} d r \\
& =-\frac{i \rho}{4 \pi} \int_{b}^{a} \frac{d r}{r} \\
& =\frac{i \rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

We divide this expression by the current to get the resistance. Then

$$
R=\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

$\mathbf{P 3 0 - 1 0}$ Let $\Delta V=\Delta V_{x y}$. By symmetry $\Delta V_{2}=0$ and $\Delta V_{1}=\Delta V_{4}=\Delta V_{5}=\Delta V_{3}=\Delta V / 2$. Suddenly the problem is very easy. The charges on each capacitor is q_{1}, except for $q_{2}=0$. Then the equivalent capacitance of the circuit is

$$
C_{\mathrm{eq}}=\frac{q}{\Delta V}=\frac{q_{1}+q_{4}}{2 \Delta V_{1}}=C_{1}=4.0 \times 10^{-6} \mathrm{~F}
$$

P30-21 (a) q doesn't change, but $C^{\prime}=C / 2$. Then $\Delta V^{\prime}=q / C=2 \Delta V$.
(b) $U=C(\Delta V)^{2} / 2=\epsilon_{0} A(\Delta V)^{2} / 2 d . U^{\prime}=C^{\prime}\left(\Delta V^{\prime}\right)^{2} / 2=\epsilon_{0} A(2 \Delta V)^{2} / 4 d=2 U$.
(c) $W=U^{\prime}-U=2 U-U=U=\epsilon_{0} A(\Delta V)^{2} / 2 d$.

P30-24 The result is effectively three capacitors in series. Two are air filled with thicknesses of x and $d-b-x$, the third is dielectric filled with thickness b. All have an area A. The effective capacitance is given by

$$
\begin{aligned}
\frac{1}{C} & =\frac{x}{\epsilon_{0} A}+\frac{d-b-x}{\epsilon_{0} A}+\frac{b}{\kappa_{\mathrm{e}} \epsilon_{0} A} \\
& =\frac{1}{\epsilon_{0} A}\left((d-b)+\frac{b}{\kappa_{\mathrm{e}}}\right) \\
C & =\frac{\epsilon_{0} A}{d-b+b / \kappa_{\mathrm{e}}} \\
& =\frac{\kappa_{\mathrm{e}} \epsilon_{0} A}{\kappa_{\mathrm{e}}-b\left(\kappa_{\mathrm{e}}-1\right)}
\end{aligned}
$$

