Bilkent University - Physics Department Phys-112 Electricity & Magnetism

FINAL EXAM

Duration: 120 minutes

1] (25 pts) A conducting disk of radius R rotates with an angular velocity of ω . There is a uniform magnetic field B perpendicular to the disk. Determine:

a) The emf produced between the center and the ω outer edge of the disk,

18 May 2007

b) The torque that must be provided if the output current is *i*.

2] (25 pts) An infinitely long coaxial cable consists of two conducting concentric cylindrical shells with radii *a* and *b*. There is free-space in the regions: r < a, b > r > a, and r > b. Determine its inductance per unit length.

+5 points BONUS if you determine it using the stored magnetic energy.

3] (25 pts) For the following *RL* circuit determine the numerical values of i_1 and i_2 (a) just after the switch S is closed, (b) a long time later; also determine the energy stored in the inductor up to this time, (c) just after the switch S is opened <u>again</u>, and (d) after a long time later.

Hint: Use the fact that the inductor current should be continuous in time (Faraday's Law)

Get the numerical values correct, no partial credits for this question!

4] Give very brief (a couple of lines) answers for the following questions (5 points each)

a) What is the difference between the magnetic behavior of a diamagnetic and a paramagnetic material?

- **b**) What does the Lenz' law state?
- c) What is a mutual inductance?
- d) What is the SI unit for magnetic permeability?
- e) Why should $\oint \overline{B} \cdot \hat{n} da$ vanish for any closed surface S?