Quizzes, with solutions

MATH 224, Linear Algebra 2, Spring 2024, Laurence Barker

version: 19 March 2024

Quiz 1: Let V be a 2-dimensional vector space over the field $\mathbb{F}_{5}=\mathbb{Z} / 5$ of order 5 . How many subspaces does V have?

Solution: The unique 0-dimensional subspace of V is $\{0\}$. The unique 2-dimensional subspace of V is V. All the other subspaces are 1-dimensional. Each of the $5^{2}-1=24$ nonzero vectors in V generates a 1-dimensional subspace. On the other hand, each of the 1-dimensional subspace is generated by any of its $5-1=4$ elements. So the number of 1 -dimensional subspaces is $24 / 4=6$, and the total number of subspaces of V is $1+1+6=8$.
Quiz 2: Consider the coding scheme over \mathbb{F}_{2} with generating matrix $G=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$.
(a) Write out the decoding table with syndromes.
(b) For the received word 110, what is the syndrome and the decoded codeword?

Solution: Part (a). The Hamming matrix is $H=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. The decoding table is as shown.

00	01	10	11	syndrome
000	011	101	110	0
001	010	100	111	1

Part (b). The decoded codeword is 110 and the decoded message word is 11 .

Quiz 3: Diagonalize the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

That is to say, find an invertible matrix P and a diagonal matrix D such that $D=P D P^{-1}$.
Solution: The characteristic polynomial of A is

$$
\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}-1=\lambda^{2}-4 \lambda+3=(3-\lambda)(1-\lambda)
$$

which has roots 3 and 1. The eigenvalues 3 and 1 have associated eigenvectors $(1,1)$ and $(1,-1)$, respectively. So we can put

$$
P=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]
$$

Comment 1: As a check, we note that

$$
P D P^{-1}=\left[\begin{array}{rr}
3 & 1 \\
3 & -1
\end{array}\right] \frac{1}{-2}\left[\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
3 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=A
$$

Comment 2: We made use of the general fact that, for a diagonalizable $n \times n$ matrix A with a basis of eigenvectors f_{1}, \ldots, f_{n} and corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, we have $A=P D P^{-1}$ where the (j, j) entry of D is λ_{j} and the j-th column of P is the column vector

$$
f_{j}=\left[\begin{array}{c}
p_{1, j} \\
\vdots \\
p_{i, j} \\
\vdots \\
p_{n, j}
\end{array}\right] .
$$

Quiz 4: Evaluate A^{4} where $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
Solution: We have $A^{2}=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$, hence $A^{4}=\left[\begin{array}{lll}1 & 4 & 6 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]$.
Quiz 5: Let $\langle-\mid-\rangle$ be a symmetric bilinear form on a real vector space V auch that $\langle-\mid-\rangle$ is nonzero in the sense that $\langle x \mid y\rangle \neq 0$ for some $x, y \in V$. Show that $\langle x \mid x\rangle \neq 0$ for some $x \in V$.

Solution: Let $y, z \in V$ such that $\langle y \mid z\rangle \neq 0$. We may assume that $\langle y \mid y\rangle=\langle z \mid z\rangle=0$. Putting $x=y+z$, then $\langle x \mid x\rangle=2\langle y \mid z\rangle \neq 0$.

