
BILKENT UNIVERSITY
PhD PROGRAMME
QUALIFYING EXAM
IN MATHEMATICS

28 May 2021

Instructions:

• The FOUR sections are labelled A, B, C, D. Attempt at most TWO questions from
each of the four sections A, B, C, D. Thus, you are to attempt at most EIGHT questions
altogether.

• Hand in separate scripts for each examiner.

Examiner 1: Algebra, questions A1, A2, A3.

Examiner 2: Commutative Algebra, question A4.

Examiner 3: Real Analysis, questions B1, B2.

Examiner 4: Methods of Applied Mathematics, questions C1, C2, C3, C4.

Examiner 5: Geometry, questions D1, D2.

Examiner 6: Topology, questions D3, D4.

Time allowed: three hours.
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Section A: Algebra

A1: Let G be a finite group, p a prime, H a subgroup of G such that |H| is divisble by p and
|H ∩ gH| is coprime to p for all g ∈ G−H. Show that the index |G : H| is coprime to p.

A2: Let K be the splitting field for X3 + 3X2 + 3 over Q.

(a) Determine the Galois group Gal(K/Q) up to isomorphism.

(b) How many fields L are there such that Q ≤ L ≤ K?

A3: Let F be a field. Let MatN(F ) be set of matrices with over F whose rows and columns
are indexed by the set of natural numbers. Let R be the ring consisting of those matrices in
MatN(F ) that have only finitely many entries in each row and each column. Let FN be the
R-module consisting of the coordinate vectors with coordinates indexed by N.

(a) Show that FN is not a simple R-module.

(b) Explicitly describe a simple R-submodule of FN.

A4: Let F be a field. Suppose G is a Gröbner basis for the non-zero ideal I in F [x1, x2 . . . , xn]
with respect to the lexicographic monomial order with x1 > x2 > · · · > xn. Show that
G ∩ F [xi+1, . . . , xn] is a Gröbner basis for the ideal I ∩ F [xi+1, . . . , xn].
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Section B: Analysis

B1: Suppose a measure µ on R is such that all subsets of R are measurable and µ(x) > 0 for
each x ∈ R. For a function f : R −→ R, let

∫
|f |dµ < ∞. Prove that f(x) = 0 for all x except

maybe a countable set.

B2: Let T : f(x) 7→ g(x) =

∫ x

0

f(t)dt√
t

.

(a) Is T compact as an operator from C[0, 1] to C[0, 1]?

(b) Is T bounded as an operator from C[0, 1] to L2(0, 1)? If T is bounded, find its norm.

B3: Let D ⊂ C be the open unit disc and suppose f : D → D is holomorphic. Show that
1− |f(z)|2

1− |z|2
≥ 1− |f(0)|

1 + |f(0)|
for all z ∈ D. (First take care of the case f(0) = 0.)

B4: Let f be a nonconstant entire function satisfying the property that for every compact set
K ⊂ C, the preimage set f−1(K) is also compact.

(a) Prove that this property is equivalent to the condition lim
z→∞

f(z) = ∞ which is equivalent

to the condition that f has a pole at ∞.

(b) Prove that f(C) = C, that is, f is onto.

(c) Deduce the fundamental theorem of algebra from above, that is, prove that a nonconstant
holomorphic polynomial has a complex root.
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Section C: Methods of Applied Mathematics

C1: Let a second order linear differential equation be given by Lu = f(x), x ∈ I = [a, b]
where L is a second order linear operator and f(x) is continues function in I. Let the boundary
conditions be given by B1(u) = 0 at x = a and B2(u) = 0 at x = b where B1 and B2 are some
(B1 is not proportional to B2) first order differential operators.

(a) Find the Green’s function of the problem in terms of the solutions of the homogenous
problem Lu = 0.

(b) Find the solution of the given boundary value problem.

(c) Discuss the existence and uniqueness of the boundary value problem.

C2: Use the Poincaré–Linstead method to obtain (first order perturbation) a two term per-
turbation expansion approximation of the problem y′′ + y = ϵ[1 − (y′)2] with y(0) = 1 and
y′(0) = 0.

C3: Consider

∇2 u(r, θ) = 0, 0 ≤ r < a, (1)

∂u(r, θ)

∂r
|r=a + αu(a, θ) = f(θ), (2)

where f is a 2π periodic continuous function and α > 0 (a constant).

(a) Solve the above problem formally using separation of variables.

(b) Find reasonable conditions on f so that the formal solution is the solution of the problem.

C4: If ℓ is not preassigned, show that the stationary functions corresponding to the problem
δ
∫ ℓ
0 [y′2 + 4(y − 1)]dx = 0, with y(0) = 2 and y(ℓ) = ℓ2 are of the form y = x2 − 2(x/ℓ) + 2.

Show that ℓ must be equal to 1.
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Section D: Geometry and Topology

D1: Show that there are, up to isomorphism, only two affine quadratic curves but only one
projective quadratic curve, where the underlying field is algebraically closed of characteristic
different than two. (Here “curve” is taken as smooth and irreducible.)

D2: Show that the complex projective space is quasi-compact both with respect to Euclidean
and Zariski topology.

D3: A topological group is a Hausdorff topological space G together with a group structure
on G such that the group operation ∗ : G × G → G is continuous and the group inversion
(·)−1 : G → G is continuous.

(a) Assume that R denotes the topological group with the group operation + and the topology
τ = {U ⊆ R | ∀p ∈ U, ∃ϵ ∈ R+, ∀x ∈ R, |x − p| < ϵ ⇒ x ∈ U }. Considering the quotient
topology on R/Q and the quotient group structure on R/Q. Is R/Q a topological group?

(b) If A is a connected subset of a topological space X and A ⊆ B ⊆ A then show that B is
connected. (Notation: A = closure of A in X.)

(c) Let G be a topological group. If G0 is the component of G that contains the identity
element then show that G0 is a closed normal subgroup of G.

D4: Let X be the CW-complex obtained from Y = S2 by attaching a cell D3 by a map of
degree 5.

(a) Assume that . . .
∂i+2−→ Ci+1

∂i+1−→ Ci
∂i−→ . . . denotes the singular chain complex of X where

0 = C−1 = C−2 = . . . . For an abelian group A and an integer i, let Si = Hom(C−i, A), ∂̃i+1 =

Hom(∂−i, 1A) and Ki = Hom(A,Ci), ∂
′
i = Hom(1A, ∂i). Then . . .

∂̃i+2−→ Si+1
∂̃i+1−→ Si

∂̃i−→ . . . and

. . .
∂′
i+2−→ Ki+1

∂′
i+1−→ Ki

∂′
i−→ . . . are two chain complexes. Compute the homology groups of these

two chain complexes for A = Z, Z/5, Z/7, and Q.

(b) Compute the induced map from Hi(X;Z) to Hi(X/Y ;Z) by the quotient map X → X/Y
for i in {2, 3}.

(c) Compute the induced map from H3(X/Y ;Z) to H3(X;Z) by the quotient map X → X/Y .

(d) Is the splitting in the universal coefficient theorem for cohomology natural?
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Some Solutions

Sol A1: We must show thatH contains a Sylow p-subgroup of G. Let T be a Sylow p-subgroup
of H. Let S be a Sylow p-subgroup of G containing T . We are to show that T = S. Given
g ∈ NS(T ), then T = T ∩ gT ≤ H ∩ gH. Since T is non-trivial, |H ∩ gH| must be divisible by
p. Therefore, g ∈ H. It follows that g ∈ T . So T = NS(T ), in other words, T = S, as required.

Sol A2: Part (a). Write f(X) = X3+3X2+3. By Eisenstein’s Criterion, f(X) is irreducible.
So Gal(K/Q) is isomorphic to C3 or S3. The derivative 3X2 + 6X has roots −2 and 0. We
have f(−2) = 7 > 0 < 3 = f(0), so f(X) has exactly one real root. Complex conjugation
induces an involution in Gal(K/Q). Therefore, Gal(K/Q) ∼= S3.

Part (b). The number of intermediate fields L is 6. Indeed, this follows from part (a) and
the Fundamental Theorem of Galois Theory, since S3 has exactly 6 subgroups.

Sol A3: Let S be the R-submodule of FN consisting of consisting of those elements that have
only finitely many non-zero coordinates. The required conclusion of part (a) holds because S
is a proper submodule of FN.

For part (b), we shall show that S is simple. Consider a non-zero R-submodule T ≤ S. We
must show that T = S. For i, j ∈ N, let ri,j be the element of R that has (i, j) entry 1 and all
other entries 0. Let sj be the element of S that has j coordinate 1 and all other coordinates 0.
The elements sj comprise an F -basis for S. So there exists j ∈ N such that rj,jT ̸= 0. Hence,
sj ∈ T . For each i ∈ N, we have si = ri,jsj ∈ T . Therefore T = S, as required.

Sol B1: Let
∫
|f |dµ = C and An := {x ∈ R : |f(x)| · µ(x) ≥ 1/n} for n ∈ N. Then the

cardinality #(An) of this set does not exceed Cn, so the set An is finite. Hence the set
A := {x : f(x) ̸= 0} = ∪An is at most countable.

Sol B2: a) The operator T : C[0, 1] −→ C[0, 1] is compact. Indeed, suppose a set A in C[0, 1] is
bounded, so there is C with ||f ||∞ ≤ C for all f ∈ A. Then, ||Tf ||∞ ≤ C sup0≤x≤1

∫ x
0

dt√
t
= 2C.

Also, given ε > 0, for 0 ≤ x2 − x1 ≤ δ we have |Tf(x2) − Tf(x1)| ≤
∫ x2

x1

|f(t)|dt√
t

≤ 2C(
√
x2 −

√
x1) ≤ 2C

√
δ < ε if δ < (ε/2C)2. Therefore the set TA is bounded and equicontinuous, so,

by Arzela-Ascoli Theorem, it is precompact.

b) The operator T : C[0, 1] −→ L2(0, 1) is bounded. Let ||f ||∞ ≤ 1. Then

||Tf ||22 =
∫ 1

0

(∫ x

0

f(t)dt√
t

)2

dx ≤
∫ 1

0
(2
√
x)2dx = 2.

Hence, ||T || ≤
√
2. If f ≡ 1 then ||Tf ||2 = 2, so ||T || =

√
2.

Sol B3: If f(0) = 0, then the inequality to be shown is 1−|f(z)|2 ≥ 1−|z|2, that is, |f(z)| ≤ |z|
on D, which immediately follows from the Schwarz lemma.

Otherwise, let b = f(0) ∈ D and set g(z) = φb(f(z)), where φb(w) =
b− w

1− bw
is the

holomorphic automorphism of D that exchanges 0 and b. Then g : D → D is holomorphic,
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g(z) =
b− f(z)

1− b f(z)
, g(0) = 0, and hence |g(z)| ≤ |z| on D. So

|z|2 ≥ |g(z)|2 = b− f(z)

1− b f(z)

b− f(z)

1− b f(z)
=

|b|2 − b f(z)− b f(z) + |f(z)|2

1− b f(z)− b f(z) + |b|2|f(z)|2
.

Then 1− |z|2 ≤ 1 + |b|2|f(z)|2 − |b|2 − |f(z)|2

1− b f(z)− b f(z) + |b|2|f(z)|2
=

(1− |b|2)(1− |f(z)|2)
|1− b f(z)|2

. Thus

1− |f(z)|2

1− |z|2
≥ |1− b f(z)|2

1− |b|2
≥ (1− |b| |f(z)|)2

(1− |b|)(1 + |b|)
≥ (1− |b|)2

(1− |b|)(1 + |b|)
=

1− |f(0)|
1 + |f(0)|

.

Sol B4: (a) Suppose the property holds and let M > 0. Denote by D(a, r) the open disc
centered at a with radius r. Then f−1(D(0,M)) is compact and hence lies in D(0, R) for some
R > 0, that is, D(0,M) ⊂ f(D(0, R)). So if |z| > R, then |f(z)| > M . This shows lim

z→∞
f(z) =

∞. Conversely, if lim
z→∞

f(z) = ∞ and K ⊂ C is compact, then K ⊂ D(0,M) for some M > 0.

There is R > 0 such that if |z| > R, then |f(z)| > M , that is, f−1(D(0,M)) ⊂ D(0, R). Then
f−1(K) lies in D(0, R), hence it is bounded, and since it is closed by the continuity of f , it is
compact. (We have not used the analyticity of f yet.)

Let g(z) = f(1/z). Then lim
z→0

g(z) = lim
w→∞

f(w). This limit is ∞ if and only if g has a pole

at 0 if and only if f has a pole at ∞.

(b) Suppose there is a c ∈ C such that f(z) ̸= c for all z ∈ C. Let h(z) = 1/(f(z)−c); then
h is also entire. But lim

z→∞
h(z) = 0 since by above lim

z→∞
f(z) = ∞. This shows h is bounded

and by the Liouville theorem, it is constant. Then f is also constant contrary to hypothesis.
Thus there is no such c.

(c) Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with n ≥ 1 and q(z) = p(1/z). Then

q(z) =
an
zn

+
an−1

zn−1
+ · · ·+ a1

z
+ a0 and lim

z→0
q(z) = ∞. By above, p has a pole at ∞ and hence

is onto. Consequently, p takes the value 0 at some a ∈ C and thus has a as a root.
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