
BILKENT UNIVERSITY
PhD PROGRAMME
QUALIFYING EXAM
IN MATHEMATICS

14 July 2015

Instructions:

• The FOUR sections are labelled A, B, C, D. Attempt at most TWO questions from
each of the four sections A, B, C, D. Thus, you are to attempt at most EIGHT questions
altogether.

• Hand in separate scripts for each examiner.

Examiner 1: Algebra, questions A1, A2, A3.

Examiner 2: Algebra, question A4.

Examiner 3: Analysis, questions B1, B2.

Examiner 4: Analysis, questions B3, B4.

Examiner 5: Applied Mathematics, questions C1, C2, C3, C4.

Examiner 6: Geometry and Topology, questions D1, D2.

Examiner 7: Geometry and Topology, questions D3, D4.

Time allowed: three hours.

1



Section A: Algebra

A1: Let R be a unital ring. Recall, one characterization of the Jacobson radical J(R) is as
the set of x ∈ R such that 1− axb is a unit for all a, b ∈ R.

(a) Let M be a finitely generated non-zero R-module. Let J(R)M be the R-submodule of M
consisting of the elements that can be written in the form a1x1+...+anxn where ai ∈ J(R) and
xi ∈ M . Show that J(R)M is strictly contained in M . (Hint: consider a minimal generating
set for M .)

(b) Now suppose that R is a finite-dimensional algebra over a field. Directly from part (a)
and the above characterization of J(R), show that J(R) is a nilpotent ideal of R.

A2: Let f(X) be an irreducible polynomial over Q with degree 4. Suppose that f(X) has
exactly 2 real roots, α and β. Let E be a the splitting field for f(X) over Q.

(a) Evaluate [Q[α] : Q].

(b) Show that [E : Q[α, β]] = 2. (Hint: Let γ and δ be the two non-real roots. Explain why
γ + δ and γδ belong to Q[α, β].)

(c) Deduce that G ∼= D8 or G ∼= S4.

(d) Now suppose that G ∼= D8. How many fields K are there such that Q ≤ K ≤ E?

A3: Let G be the subgroup of GL3(C) generated by the matrices

u =

1 0 0
0 ω 0
0 0 ω2

 , v =

0 0 1
1 0 0
0 1 0

 , w =

ω 0 0
0 ω 0
0 0 ω


where ω = e2πi/3.

(a) Briefly, show that {uivj , uivjw, uivjw2} is a conjugacy class of G except when i and j are
both divisible by 3. Hence show that |G| = 27 and G has exactly 11 conjugacy classes.

(b) Find the ordinary character table of G.

A4: Let k be a a field and let R denote the polynomial ring k[x1, . . . , xn] in n variables. Recall
that a polynomial f ∈ R is called a binomial if its support consists of two monomials. Let I
be an ideal in R that is generated by binomials. Show that I has a Gröbner basis consisting
of binomials with respect to any monomial order.
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Section B: Analysis

B1: Show that the set of rational points on the line is a Gδσ set but not a Gδ set.

B2: Show that the sequence (sinnt)∞n=1 has no convergent subsequence in the space C[0, 1].

B3: Prove that the zeros of the polynomial p(z) = zn + cn−1z
n−1 + · · ·+ c1z + c0 all lie in the

open disc with center 0 and radius R =
√

1 + |cn−1|2 + · · ·+ |c1|2 + |c0|2. Assume p(z) 6= zn

to avoid trivialities.

B4: Let V = C \ [−1, 1] and f(z) = z2 − 1. Write explicitly a continuous square root g of f
on V , show that g actually is continuous on V , and then prove that g is holomorphic on V .
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Section C: Applied Mathematics

C1: Using the Green’s function method, solve u′′′ + u′′ = f(x) with u(0) = u′(0) = u′′(0) = 0.

C2: Use the singular perturbation method to obtain a uniform approximate solution to the
equation εy′′ + y′ + y2 = 0, y(0) = 1/4, y(1) = 1/2, where 0 < ε� 1 and 0 < t < 1.

C3: Determine the natural boundary condition at x = b for the variational problem defined
by

J(y) =

∫ b

a
L(x, y, y′) dx+G(y(b)), y ∈ C2[a, b], y(a) = y0

where G is a given differentiable function. As an application of this problem let L = (y′)2, y ∈
[0, 1], y(0) = 1, y(1) is unspecified and G = y2. Find y extremizing this problem.

C4: Transform the problem

y′′ + xy = 1, y(0) = y(1) = 0

to the integral equation

y(x) = −1

2
x(1− x) +

∫ 1

0
G(x, s)s y(s)ds

where G(x, s) = x(1− s) when x < s and G(x, s) = s(1− x) when x > s.
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Section D: Geometry and Topology

D1: First recall the Hurwitz formula: If f : X → Y is a non-constant holomorphic map
of degree d between two compact Riemann surfaces of genera gX and gY respectively, with
ramification divisor R, (which is always an effective divisor), then we have

2(gX − 1) = 2d(gY − 1) + degR.

(a) Prove or disprove that we always have gX ≥ gY .

(b) When do we have gX = gY ?

(c) Prove or disprove that any holomorphic map φ : Pn → E is constant, where Pn is the
complex projective n-space and E is an elliptic curve, i.e. genus of E is 1.

D2: Using Čech cohomology techniques, show that, for any meromorphic function φ on C,
there exist two entire functions f and g such that φ = f/g. (In complex analysis we prove
this using the Weierstrass factorization theorem.) Hint: You may need to be reminded that
H1(C,O∗) = 0.

D3: First note that a topological group is a pair (G,µ) where G is a Hausdorff space and
µ is a continuous multiplication G × G → G which makes G into a group such that the map
g 7→ g−1 of G → G is continuous. Secondly, note that we say a topological group (G,µ) is
compact if G is compact. Now, let (G,µ) be a compact topological group, X a Hausdorff
topological space, and Θ : G×X → X a continuous function such that

1. Θ(g,Θ(h, x)) = Θ(µ(g, h), x) for all g, h ∈ G and x ∈ X;

2. Θ(e, x) = x for all x ∈ X, where e is the identity of G.

For x ∈ X, define
Gx = { g ∈ G |Θ(g, x) = x }

as a subgroup of G, define
G(x) = {Θ(g, x) | g ∈ G }

as a subspace of X, and define a function αx from G/Gx to G(x) by αx(gGx) = Θ(g, x). Show
that αx is a homeomorphism for all x ∈ X.

D4: Let X and Y be topological spaces. Then C(X,Y ) will denote the set of continuous
functions from X to Y with the topology generated by the subbasis

{B(K,U) |K is compact in X and U is open in Y }

where B(K,U) = { f ∈ C(X,Y ) | f(K) ⊆ U }. Show that C(I, S1) is homotopy equivalent
to S1 where I denotes the unit interval [0, 1] in R and S1 denotes the unit sphere { (x, y) ∈
R2 |x2 + y2 = 1 }.
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Some Solutions

B3: Note that R > 1 under the assumption p(z) 6= zn. If |z| = R, then

|p(z)− zn| =
∣∣cn−1zn−1 + · · ·+ c1z + c0

∣∣
≤
(
|cn−1|2 + · · ·+ |c1|2 + |c0|2

)1/2 (
R2(n−1) + · · ·+R2 + 1

)1/2
=
(
R2 − 1

)1/2(R2n − 1

R2 − 1

)1/2
=
√
R2n − 1 < Rn = |zn|

by the Cauchy-Schwarz inequality and the sum of a finite geometric series. By the Rouché
theorem, p(z) and zn has the same number of zeros inside the circle |z| = R, that is, n. But p
is of degree n and has n complex zeros.

B4: For z ∈ V , define g(z) =
√
|z − 1|

√
|z + 1| e

i
2
(arg(z−1)+arg(z+1)), where −π ≤ arg < π.

Then g(z)2 = |z − 1| ei arg(z−1) |z + 1| ei arg(z−1) = (z − 1)(z + 1) = f(z). Being a composition
of continuous functions, g is continuous on V \ (−∞,−1). Letting x ∈ (−∞,−1), we have

lim
y→0+

g(x + iy) =
√
x2 − 1 e

i
2
(π+π) = −

√
x2 − 1 while lim

y→0−
g(x + iy) =

√
x2 − 1 e

i
2
(−π−π) =

−
√
x2 − 1 = g(x). Hence g is also continuous across (−∞,−1).
Further, for z ∈ V and z + h ∈ V , using the continuity of g on V ,

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

g(z + h)2 − g(z)2

h

1

g(z + h) + g(z)

= lim
h→0

f(z + h)− f(z)

h

1

g(z + h) + g(z)

= f ′(z)
1

2g(z)
=

z

g(z)
= g′(z).

Since the limit exists, g is holomorphic on V .

D1: Since R is an effective divisor, we always have degR ≥ 0. We also know that the degree
of a map is always greater than or equal to 1. We then have

2(gX − 1) = 2d(gY − 1) + degR ≥ 2d(gY − 1) ≥ 2(gY − 1),

which forces gX ≥ gY .
Part (b). Let the common genera of X and Y be g. The Hurwitz formula becomes

0 = 2(d− 1)(g − 1) + ε,

where ε is the degree of the ramification divisor and we always have ε ≥ 0. First take ε = 0.
We then have either d = 1 or g = 1. The case d = 1 is the case when f is an isomorphism
and can obviously hold for any g. The case g = 1 can hold for any d ≥ 1 and is known as an
isogeny of the elliptic curve involved.

Next take ε > 0. In this case we must have (d− 1)(g − 1) < 0, which can hold only when
g = 0. In that case we have

2(d− 1) = ε,
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which holds when f : P1 → P1 is given, after a change of coordinates, by z 7→ zd which ramifies
only at 0 and ∞ with ramification indices being d at both points. Hence the ramification
divisor becomes (d− 1) · [0] + (d− 1) · [∞] whose degree is 2(d− 1) as our arithmetic predicted.

So when d = 1, equality of genera holds for all g. When d > 1, equality of genera can hold
only if g = 0 or g = 1.

Part (c). Suppose φ is not constant. Then there exist two points p 6= q in Pn such that
φ(p) 6= φ(q). Let P1 be the line in Pn joining p to q. Restricting φ to this line we obtain a
non-constant map from a curve of genus 0 to a curve of genus 1, which we have just proved to
be impossible. Hence all such φ must be constant.

D2: Let {Uα} be an open cover of C with open disks such that we can write

φ|Uα =
fα
gα
,

where fα and gα are holomorphic on Uα and have no common zeros. Define

hαβ =
fα
fβ
.

Since any zero of fα on Uα ∩ Uβ is a zero of φ with the same multiplicity, and since the same
is true for fβ, we must have

hαβ ∈ O∗(Uα ∩ Uβ).

Moreover if we set h = {hαβ}, we see that

δ(h)αβγ = hβγh
−1
αγhαβ = 1,

so h defines a cohomology class in H1(C,O∗). Here we use the fact that the covering we chose
is Leray; all intersections are contractible. Now since H1(C,O∗) = 0, there must be a 0-cochain
k = {kα} ∈ C0({Uα},O∗) such that δ(k) = h. This gives

kβ
kα

= hαβ =
fα
fβ
,

which in turn gives
kαfα = kβfβ.

Thus there exists an entire function F such that

F |Uα = kαfα.

Note that, since each kα ∈ O∗(Uα), the entire function F has the same zeros as φ with the
same multiplicities.

Similarly there exists an entire function G which has the same zeros of 1/φ with the same
multiplicities. Then the function H defined as

H = φ
G

F

is an entire function which has no zeros. Finally we see that φ =
FH

G
, as claimed.
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