
BILKENT UNIVERSITY
PhD PROGRAMME
QUALIFYING EXAM
IN MATHEMATICS

3 September 2013

Instructions:

• The FOUR sections are labelled A, B, C, D. Attempt at most TWO questions from
each of the four sections A, B, C, D. Thus, you are to attempt at most EIGHT questions
altogether.

• Hand in separate scripts for each examiner.

Examiner 1: Algebra, questions A1, A2, A3.

Examiner 2: Analysis, questions B1, B2, B3, B4.

Examiner 3: Applied Mathematics, questions C1, C2, C3, C4.

Examiner 4: Geometry, questions D1, D2.

Examiner 5: Topology, questions D3, D4.

Time allowed: three hours.
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Section A: Algebra

A1: Let R be a ring, M an R-module, N an R-submodule of M .

(a) Show that there exists an R-submodule L of M that is maximal subject to the condition
that N ∩ L = {0}.

(b) Give an example where infinitely many such L exist.

(c) Give an example where N is a proper submodule of M and L = {0}.

A2: Let f1(X), ..., fn(X) be polynomials over Q with degree 2. Let L be the splitting field
for f1(X)...fn(X) over Q.

(a) Show that the Galois group Gal(L/Q) is abelian. (Hint: consider the squares of the group
elements.)

(b) Now suppose that the degree of L over Q is |L : Q| = 8. How many fields K are there such
that Q ≤ K ≤ L?

A3: (a) Let χ be an ordinary character of a finite groupG. Suppose that χ(1) = 2 and χ(g) 6= 2
for all g ∈ G − {1}. Let a ∈ G − Z(G) such that a3 = 1. Show that χ(a) ∈ {−1,−ω,−ω2}
where ω = e2πi/3. (Hint: consider the eigenvalues of the action of a.)

(b) Now let G be such that |G| = 24 and G has the quaternion group Q8 as a normal subgroup
and G has an element a with order 3 such that, writing Q8 = {1, z, i, iz, j, jz, k, kz} with
z2 = 1, then aia−1 = j and aja−1 = k. You may assume that the conjugacy classes are

[1] , [z] , [i] , [a] , [a2] , [az] , [a2z]

and that the sizes of the conjugacy classes are, respectively,

1 , 1 , 6 , 4 , 4 , 4 , 4 .

Explaining your methods, find the character table of G.
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Section B: Analysis

B1: Let K be a compact subset of R. Suppose that there exists a bounded (in the uniform
norm) sequence of functions on K which is not equicontinuous. Prove that for any measure µ
with suppµ = K and for each polynomial P we have that

∫
P 2 dµ = 0 implies P ≡ 0. (Hint:

prove that the set K is not finite.)

B2: Let (µα)α∈A be a family of regular signed Borel measures on a compact set K. Suppose
that for each continuous on K function f we have

sup
α∈A

∣∣ ∫ f dµα
∣∣ <∞.

Show that for each constant M we have

sup
f∈BM

sup
α∈A

∣∣ ∫ f dµα
∣∣ <∞

where BM = {f ∈ C(K) : |f(x)| ≤M for x ∈ K}.

B3: Define f(z) =

∫ 1

0

dt

t− z
for z = x + iy ∈ C \ [0, 1]. In each of the following three cases,

compute the limit lim
y→0+

[
f(x+ iy)− f(x− iy)

]
.

(a) 0 < x < 1,

(b) x = 0 or x = 1,

(c) x > 1 or x < 0.

B4: For n = 1, 2, . . ., let {an} be a sequence of distinct complex numbers with an → ∞ as
n → ∞ and let {cn} be any sequence of complex numbers. Prove that there exists an entire
function f such that f(an) = cn for every n.
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Section C: Applied Mathematics

C1: Let a sequence of functions be given by

Dn(x) =

√
n

π
e−nx

2
, n = 1, 2, · · · , x ∈ R

For any good function f(x), calculate the following:

(a) lim
n→∞

Dn(x),

(b)

∫ ∞
−∞

Dn(x) dx,

(c) lim
n→∞

∫ ∞
−∞

Dn(x) f(x) dx.

C2: Let Pn(x), (n = 0, 1, 2, · · · ) be the Legendre polynomials defined through the Rodriguez
formula

Pn(x) =
(−1)n

2n n!

dn

dxn
(1− x2)n .

[Further information: w = 1, s = 1− x2, and kn =
2n Γ(n+ 1/2)

n! Γ(1/2)
, k′n = 0, hn =

1

n+ 1/2
.]

(a) Show that ∫ 1

−1
Pn(x)hm(x) dx = 0, m < n

where hm(x) is a polynomial of degree m. Discuss the case when m ≥ n.

(b) Prove that Pn(x) is a polynomial of degree n.

(c) Prove the recursion relation (n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0.

C3: Obtain the Euler-Lagrange equation and the associated natural boundary conditions for
the problem δJ = 0 where

J(y) =

∫ b

a
L(x, y, y′)dx− βy(b) + αy(a)

Here α and β are arbitrary constants and y(a) and y(b) are not prescribed.

C4: Show that the following Dirichlet problem in a rectangular region D ⊂ R2 is well-posed:

∇2 u = 0, (x, y) ∈ D [ 0 < x < a, 0 < y < b ],

u(x, 0) = f(x), u(x, b) = 0, 0 ≤ x ≤ a,
u(0, y) = u(a, y) = 0, 0 ≤ y ≤ b.

4



Section D: Geometry and Topology

D1: Let C be a compact Riemann surface of genus g. For any divisor D on C, the Riemann-
Roch theorem says that

`(D)− `(K −D) = degD − g + 1,

where K is a canonical divisor of C. If further D ≥ 0, `(D) > 0 and `(K −D) > 0, we say D
is a special divisor. The Clifford theorem says that for any special divisor D on C,

`(D) ≤ 1

2
degD + 1.

Prove the Clifford theorem assuming the Riemann-Roch theorem.

D2: Let C be a compact Riemann surface of genus 1. Let K be a canonical divisor on C. We
know that `(K) = 1 from various considerations. Fix a point p ∈ C. Use the Riemann-Roch
theorem to prove the following.

(a) There exist nontrivial meromorphic functions f and g on C with the properties that f and
g are holomorphic everywhere on C except at the point p where f and g have poles of orders
2 and 3 respectively.

(b) There exists a polynomial

P (X,Y ) = c0 + c1X + c2Y + c3X
2 + c4XY + c5X

3 + c6Y
2,

where ci are complex numbers with c5c6 6= 0 such that P (f, g) ≡ 0.

D3: Write I for unit interval [0, 1], write D2 for the unit disk {(x, y) ∈ R2 |x2 + y2 ≤ 1},
write S2 is the unit sphere {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1} and RP 2 for the real projective
space S2/ ∼ where (x, y, z) ∼ (−x,−y,−z) for (x, y, z) in S2. Take any point x0 ∈ RP 2. Let
A = {0, 1} and B = {(−1, 0), (1, 0)}. Let X be the space of continuous functions (I, A) →
(RP 2, {x0}) and let Y be the space of continuous functions (D2, B) → (RP 2, {x0}), both
spaces having the compact-open topology.

(a) Is X homotopy equivalent to Y ?

(b) Find the cardinality of the path connected components of X.

D4: Let Sn denote the unit sphere in the Euclidean space Rn+1. Let T denote the torus
S1 × S1.

(a) Calculate Hn(T ;Z), the nth singular homology group of T , for n ≥ 0.

(b) Calculate Hn(T ;Z/3), the nth singular cohomology group of T with coefficients in Z/3,
for n ≥ 0.

(c) Is there a continuous function from S2 to T which induces an isomorphism from H2(S
2;Z)

to H2(T ;Z) ?

(d) Is there a continuous function from T to S2 which induces an isomorphism from H2(T ;Z)
to H2(S

2;Z) ?
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Comments and solutions

A1: (Sketch.) (a) Zorn’s Lemma. (b) Complementary spaces of subspaces of vector spaces
over infinite fields. (c) Proper subgroups of cyclic groups, as Z-modules.

A2: The Galois group acts faithfully on the roots and all the orbits have size at most 2, so the
group is an elementary abelian 2-group. When the group has order 8, the number of subgroups
with order 1, 2, 4, 8 is 1, 7, 7, 1, respectively. By the Fundamental Theorem of Galois Theory,
the number of intermediate fields is 1 + 7 + 7 + 1 = 16.

A3: (Sketch.) (a) The representation is faithful, so the eigenvalues of a must be distinct
cube roots of unity. (b) The irreducibles of degree unity can be obtained by inflation from
G/Q8

∼= C3. An irreducible with degree 3 can be obtained by inflation from G/〈z〉 ∼= A4 or
by induction from Q8. The three irreducibles ψ with degree 2 all have ψ(z) = −2 by column
orthonormality. Bearing in mind part (a) and tensor products with degree unity irreducibles,
the rest of the table is forced. Note that ψ(az) = −ψ(a) because z acts as multiplication by −1.
If a few of these tricks are missed, column orthonormality may make up for it. Incidentally,
G ∼= SL(2, 3).

D3: Call the limit L. By Morera theorem, f is holomorphic and hence continuous wherever
it is defined. So if x > 1 or x < 0, then L = 0. Next let 0 ≤ x ≤ 1 and y > 0. We have

f(x+ iy) =

∫ 1

0

dt

t− x− iy
=

∫ 1

0

t− x+ iy

(t− x)2 + y2
dt

=

∫ 1

0

t− x
(t− x)2 + y2

dt+
i

y

∫ 1

0

dt

1 +
( t− x

y

)2
=

[
1

2
ln
(
(t− x)2 + y2

)
+ i tan−1

( t− x
y

)]t=1

t=0

=
1

2
ln

(1− x)2 + y2

x2 + y2
+ i

[
tan−1

(1− x
y

)
+ tan−1

(x
y

)]
,

where all evaluations are real. Then

f(x+ iy)− f(x− iy) = 2i

[
tan−1

(1− x
y

)
+ tan−1

(x
y

)]
.

Thus L = 2πi if 0 < x < 1, and L = πi if x = 0 or x = 1.

D4: By the Weierstrass theorem, there is an entire function g with a simple (since the an
are distinct) zero at each an and no other zeros. So g(an) = 0 and g′(an) = bn 6= 0 for

each n; that is, g has the Taylor expansion g(z) = bn(z − an) +
g′′(an)

2
(z − an)2 + · · · at

each an. By the Mittag-Leffler theorem, there is a meromorphic function h in C with the

principal part
cn

bn(z − an)
at each an and no other poles; that is, h has the Laurent expansion

h(z) =
cn

bn(z − an)
+ hn(z) at each an, where hn is holomorphic in a neighborhood of an. Set

f = gh. Then f is entire and satisfies f(an) = cn for every n.
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