
MATH 224: Linear Algebra 2

Midterm

19 March 2024, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

You may take the question sheet home.

1: (30 marks.) Consider the linear coding scheme over F2 with generating matrix

G =


1 0 0
0 1 0
0 0 1
1 0 1
1 1 0

 .

(a) Encode the message words 100, 110, 111.

(b) What is the Hamming matrix H for the coding scheme?

(c) Explain why the received word 10000 must have decoding 000, but 01000 and 00100 do
not necessarily have decoding 000.

(d)Write down a decoding table, including the column of syndromes, ensuring that the received
words 01000 and 00100 have decoding 000.

(e) Using that decoding table, for the received words 11100, 01110, 00111, write down the
syndromes and the decoded words.

2: (30 marks.) Consider the matrix

A =

−5 3 1
−8 5 2
−7 3 3


over C. You may assume that the only eigenvalues of A are −1 and 2.

(a) Find an invertible matrix P and a Jordan matrix J such that A = PJP−1.

(b) Let B = (A + I)(A − 2I), where I denotes the identity 3×3 matrix. Without evaluating
B or doing any further calculation, find a basis for the kernel of B.

3: (20 marks) Let x be a nonzero vector in F3
2. How many 3×3 matrices A over F2 are there

such that Ax = 0? (Hint: the set of such matrices A can be regarded as a vector space over
F2.)

4: (20 marks.) Let A be an n×n matrix over an algebraically closed field. Show that A is
similar to the transpose matrix AT . (Recall, the matrices similar to A are the matrices having
the form PAP−1 where P is invertible.)
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Solutions to Midterm

1: Part (a). We have G100 = 10011 and G110 = 11010 and G111 = 11100.

Part (b). We have H =

[
1 0 1 1 0
1 1 0 0 1

]
.

Part (c). The minimal weight received words for each possible syndrome are as shown.

syndrome minimal weight words

00 00000
01 01000, 00001
10 00100, 00010
11 10000

So there are exactly 4 possible decoding tables and, for any such table, the 4 received words
with decoding 000 must be 00000, 10000, one of 01000 or 00001, one of 00100 or 00010.

Part (d). In the following decoding table, the top row lists the message words and the rightmost
column lists the syndromes.

000 001 010 011 100 101 110 111

00000 00110 01001 01111 10011 10101 11010 11100 00
01000 01110 00001 00111 11011 11101 10010 10100 01
00100 00010 01101 01011 10111 10001 11110 11000 10
10000 10110 11001 11111 00011 00101 01010 01100 11

Part (e). From (d), we obtain the next table.

received syndrome decoding

11100 00 111
01110 01 001
00111 01 011

2: The trace of A is −5 + 5 + 3 = 3 = −1 + 2.2, so the eigenvalues −1 and 2 must have
multiplicities 1 and 2, respectively. Therefore, we can put

J =

−1 0 0
0 2 1
0 0 2

 .

Let v = (x, y, z) in C3. Then v is a −1-eigenvector of A if and only if (A+ I)v = 0, that is,

−4x+ 3y + z = −8x+ 6y + 2z = −7x+ 3y + 4z = 0 ,

equivalently, x = y = z. So A has −1-eigenvector f1 = (1, 1, 1). Meanwhile, v is a 2-eigenvector
of A if and only if (A− 2I)v = 0, that is,

−7x+ 3y + z = −8x+ 3y + 2y = 0 ,

equivalently, v = (x, 2x, x). So A has 2-eigenvector f2 = (1, 2, 1), furthermore, every 2-
eigenvector of A is a scalar multiple of f2. Since the eigenvalue 2 has multiplicity 2, there
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must exist a generalized 2-eigenvector f3 such that (A − 2I)f3 = f2. Writing f3 = (x, y, z),
then

−7x+ 3y + z = 1 , −8x+ 3y + 2z = 2 .

So we can put f3 = (0, 0, 1). Taking P to be the coordinate transformation matrix to coordi-
nates with respect to the standard basis from coordinates with respect to the basis {f1, f2, f3},
also taking J to be the Jordan matrix associated with that basis, we have

P =

1 1 0
1 2 0
1 1 1

 , J =

−1 0 0
0 2 1
0 0 2

 .

The construction of P and J ensures that A = PJP−1.

Comment: As a direct check, the above matrices P and J satisfy

PJP−1 =

−1 2 1
−1 4 2
−1 2 3

 2 −1 0
−1 1 0
−1 0 1

 = A .

Part (b). The subspace ker(B) = E−1(A)⊕ E2(A) has basis {f1, f2} = {(1, 1, 1), (1, 2, 1)}.

3: In the following argument, all the vector spaces are over F2. Let V be the vector space
consisting of the matrices A as specified. Then V is isomorphic to the vector space W of
operators α on F3

2 such that α(x) = 0. Let F = {f1, f2, f3} be an ordered basis for F3
2 with

f1 = x. Let X be the vector space consisting of those 3×3 matrices over F2 whose first column
is zero. The condition α(f1) = 0 is precisely the condition that the matrix representing α
belongs to X. So W is isomorphic to X. We have dim(X) = 6. So the number of possible A
is |V | = |W | = |X| = 26 = 64.

Comment: As a variant of the argument, we can consider a subspace U of V complementary
to F2x. Since α is determined by the restriction of α to U , there is an isomorphism between
W and the 6-dimensional space of linear maps F3

2 ← U . Thus, dim(W ) = 6 and, again, the
number of possible A is |V | = |W | = 26.

4: Let F be the scalar field. By the Jordan Normal Form Theorem, A = PJP−1 where
P, J ∈ Matn(F ) with P invertible and J a Jordan matrix. We have AT = QJTQ−1 where
Q = (P−1)T = (P T )−1. So we may assume that A = J . Writing A = diag(J1, ...) where J1, ...
are Jordan blocks, then AT = diag(JT

1 , ...). So we may assume that A is a Jordan block. Then
AT = RAR where R is the permutation matrix that reverses the order of the coordinates, we
mean the (i, j) entry of R is 1 or 0 depending on whether i+j = n+1 or otherwise, respectively.

Comment: An alternative argument would be to examine the ranks of the matrices having the
form

∏
λ(A− λI)mλ , and similarly for AT , where λ runs over the eigenvalues of A and the mλ

are natural numbers. We omit the details.

Comment: Two square matrices with the same characteristic polynomial need not be similar.
So it is not enough to show that A and AT have the same characteristic polynomial. Two
square matrices with the same characteristic polynomial and the same minimal polynomial
again need not be similar.

Actually, it is a nice exercise to show that, for n ≤ 3, two n×n matrices over F are similar
if and only if they have the same characteristic polynomial and the same minimal polynomial.
It is another nice exercise to find a counter-example for any given n ≥ 4.
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