MATH 220: Linear Algebra

12 March 2024, LJB

The duration of the exam is 120 minutes. It is a closed book exam.
Answers are to be justified by showing the working, explaining the reasoning.
You make take the question sheet home.
1: (10 marks.) Find all the real numbers a, b, c, d such that

$$
a+b+c+d=10, \quad 2 a+3 b+4 c+5 d=40, \quad 4 a+5 b+6 c+7 d=60
$$

2: (20 marks.) Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7\end{array}\right]$.
(a) Find a basis for the kernel of A. (The kernel is also called the null space.)
(b) Evaluate the rank and nullity of A.

3: Let $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 3 & 9\end{array}\right]$.
(a) (20 marks.) Find the inverse of A by Gauss-Jordan elimination.
(b) (20 marks.) Find the inverse of A by the method of minors and cofactors.

4: (20 marks.) Which of the following statements are true for all positive integers n, all $n \times n$ real matrices A and all finite subsets $\left\{s_{1}, \ldots, s_{m}\right\}$ of \mathbb{R}^{n} ? In each case, give a general argument to show why the statement is true, or a single numerical example to show why the statement is false.
(a) If $\left\{A s_{1}, \ldots, A s_{m}\right\}$ is linearly independent, then A is invertible.
(b) If $\left\{A s_{1}, \ldots, A s_{m}\right\}$ spans \mathbb{R}^{n}, then A is invertible.
(c) If A is invertible and $\left\{s_{1}, \ldots, s_{m}\right\}$ is linearly independent, then $\left\{A s_{1}, \ldots, A s_{m}\right\}$ is linearly independent.
(d) If A is invertible and $\left\{s_{1}, \ldots, s_{m}\right\}$ is a basis for \mathbb{R}^{n}, then $\left\{A s_{1}, \ldots, A s_{m}\right\}$ is a basis for \mathbb{R}^{n}.

5: (10 marks.) Let x be a nonzero vector in \mathbb{R}^{5}. Let V be the vector space consisting of the 5×5 real matrices A such that $A x=0$. Evaluate $\operatorname{dim}(V)$.

Solutions to Midterm

1: The augmented matrix is $\left[\begin{array}{cccc|c}1 & 1 & 1 & 1 & 10 \\ 2 & 3 & 4 & 5 & 40 \\ 4 & 5 & 6 & 7 & 60\end{array}\right]$.
Subtracting multiples of row 1 from the other rows gives $\left[\begin{array}{llll|l}1 & 1 & 1 & 1 & 10 \\ 0 & 1 & 2 & 3 & 20 \\ 0 & 1 & 2 & 3 & 20\end{array}\right]$.
Subtracting row 2 from the other rows, we obtain $\left[\begin{array}{rrrr|r}1 & 0 & -1 & -2 & -10 \\ 0 & 1 & 2 & 3 & 20 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
The linear system has been reduced to

$$
a=c+2 d-10, \quad b=-2 c-3 d+20
$$

So the solutions are

$$
(a, b, c, d)=(c+2 d-10,-2 c-3 d+20, c, d)
$$

where c and d can be any real numbers.
2: Part (a). By the previous question,

$$
\operatorname{ker}(A)=\{(c+2 d .-2 c-3 d, c, d): c, d \in \mathbb{R}\}=\operatorname{span}\{(1,-2,1,0),(2,-3,0,1)\}
$$

which has basis $\{(1,-2,1,0),(2,-3,0,1)\}$.
Part (b). By part (a), null $(A)=2$. By the rank-nullity formula, $\operatorname{rank}(A)=4-\operatorname{null}(A)=2$.
3: Part (a). We set up the problem as $\left[\begin{array}{rrr|rrr}1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 9 & 0 & 0 & 1\end{array}\right]$.
Subtracting multiples of row 1 from the other two rows, we obtain $\left[\begin{array}{rrr|rrr}1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 & 1 & 0 \\ 0 & 4 & 8 & -1 & 0 & 1\end{array}\right]$.
Dividing row 2 by 2 gives $\left[\begin{array}{rrr|ccc}1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 4 & 8 & -1 & 0 & 1\end{array}\right]$.
Subtracting 4 times row 2 from row 3 gives $\left[\begin{array}{ccc|ccc}1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 8 & 1 & -2 & 1\end{array}\right]$.
Dividing row 3 by 8 gives $\left[\begin{array}{rrr||ccc}1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 & 1 / 8 & -1 / 4 & 1 / 8\end{array}\right]$.
Subtracting row 3 from row 1 gives $\left[\begin{array}{rrr|rrc}1 & -1 & 0 & 7 / 8 & 1 / 4 & -1 / 8 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 & 1 / 8 & -1 / 4 & 1 / 8\end{array}\right]$.
Adding row 2 to row 1 gives $\left[\begin{array}{ccc|rrc}1 & 0 & 0 & 3 / 8 & 3 / 4 & -1 / 8 \\ 0 & 1 & 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 & 1 / 8 & -1 / 4 & 1 / 8\end{array}\right]$.

We obtain $A^{-1}=\frac{1}{8}\left[\begin{array}{rrr}3 & 6 & -1 \\ -4 & 4 & 0 \\ 1 & -2 & 1\end{array}\right]$.
Part (b). The matrix of minors for A is $\left[\begin{array}{ccc}9-3 & 9-1 & 3-1 \\ -9-3 & 9-1 & 3+1 \\ -1-1 & 1-1 & 1+1\end{array}\right]=\left[\begin{array}{ccc}6 & 8 & 2 \\ -12 & 8 & 4 \\ -2 & 0 & 2\end{array}\right]$.
Hence, $\operatorname{adj}(A)=\left[\begin{array}{rrr}6 & 12 & -2 \\ -8 & 8 & 0 \\ 2 & -4 & 2\end{array}\right]$.
From the $(1,1)$ entry of the equality $A \cdot \operatorname{adj}(A)=\operatorname{det}(A) \cdot I$, we have $\operatorname{det}(A)=6+8+2=16$. Therefore, $A^{-1}=\operatorname{adj}(A) / 16$, and we obtain the same value of A^{-1} as in part (a).
4: Part (a). False, for example, when $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $m=1$ and $s_{1}=(1,0)$.
Part (b). True. We have $\operatorname{rank}(A)=n$, hence $(A)=0$ and A is invertible.
Part (c). True. Supposing $\sum_{j} \lambda_{j} A s_{j}=0$ with each $\lambda_{j} \in \mathbb{R}$ then, left multiplying by A^{-1}, we deduce that $\sum_{j} \lambda_{j} s_{j}=0$, so each $\lambda_{j}=0$.

Part (d). True. Since $\left\{s_{1}, \ldots, s_{m}\right\}$ is a basis for \mathbb{R}^{n}, we have $m=n$. The required conlcusion now follows using part (c).
5: Let $\mathcal{D}=\left\{d_{1}, \ldots, d_{5}\right\}$ be a basis for for \mathbb{R}^{5} such that $d_{5}=x$. For all i and j with $1 \leq i \leq 5$ and $1 \leq j \leq 4$, there exists a unique 5×5 matrix $A_{i, j}$ sending d_{j} to d_{i} and sending all the other elements of \mathcal{D} to 0 . The matrices $A_{i, j}$ comprise a basis for V, so $\operatorname{dim}(V)=20$.

