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Homework 1: Review of fundamental theory of vector spaces and linear maps

I do not intend to give solutions to this homework but, if you have queries, do ask.

Exercise 1.A: Let F be a field, let U and V be finite-dimensional vector spaces over F and
let α be a linear map U → V . Prove the rank-nullity formula

dimF (U) = rank(α) + null(α) .

Hint: Extend a basis A of ker(α) to a basis B of U and show that α(B−A) is a basis for im(α).

Exercise 1.B: Let X and Y be subspaces of a finite-dimensional vector space V . Show that

dim(X + Y ) + dim(X ∩ Y ) = dim(X) + dim(Y ) .

Hint: Let A be a basis for X ∩ Y , extend A to a basis X for X and extend A to a basis Y for
Y . Show that X ∪ Y is a basis for X + Y .

For a vector space V over a field F , an F -linear map V → V is called an operator on V .

Exercise 1.C: Let α be an operator on a finite-dimensional vector space V . Show that the
following three conditions are equivalent:

(a) we have V = im(α)⊕ ker(α),

(b) we have V = im(α) + ker(α),

(c) we have im(α) ∩ ker(α) = 0.

Hint: Use the previous two exercises.

Exercise 1.D: Give an example of a field F , a finite-dimensional F -vector space V and an
operator α on V such that the equivalent conditions in Exercise 1.C fail.

Exercise 1.E: Give an example of a field F , an F -vector space V and an operator α on V
such that some but not all of the conditions in Exercise 1.C hold.

When we come to the theory of Jordan Normal Form, we shall be considering the following
constructions associated with an operator α on a finite-dimensional vector space V over a field
F . We define the Fitting image of α to be

im∞(α) =
∞⋂

m=1

im(αm) .

We define the Fitting kernel to be

ker∞(α) =
∞⋃

m=1

ker(αm) .

Neither the terminology nor the notation here seems to be standard. Different texts employ
different notation.

Exercise 1.F, easy: Show that im∞(α) and ker∞(α) are subspaces of V .

Exercise 1.G, hard: Prove the following theorem. It is named after Hans Fitting, whose
doctoral dissertation and death were both in the 1930s.

Fitting’s Theorem: (1930s, presumably.) With the notation above, V = im(α∞)⊕ ker(α∞).

Hint: Show that, for sufficiently large m, we have im∞(α) = im(αm) and ker∞(α) = ker(αm).
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Homework 2

Question 2.1: The modulus of a quaternion q = t + ix + jy + kz, with t, x, y, z ∈ R, is
defined by the Pythagorean formula

|q| =
√
t2 + x2 + y2 + z2 .

As elements of Mat2(C), write

I =

[
1 0
0 1

]
, I =

[
−i 0
0 i

]
, J =

[
0 −1
1 0

]
, K =

[
0 i
i 0

]
.

(a) Calculate the determinant of the matrix tI + xI + yJ + zK.
(b) Using part (a), show that, given q, q′ ∈ H, then |qq′| = |q|.|q′|.
(c) Let q be a non-zero quaternion. Again writing q = t+ ix+ jy+ kz, give a formula for q−1.

Question 2.2: A field F is said to be finite provided the underlying set F is finite, in other
words, provided F has only finitely many elements. Show that, if F is finite, then |F | is a
power of a prime, in other words, |F | = pm for some prime p and some positive integer m.
(Hint: First show that F contains a copy of the ring Z/n for some positive integer n. Then
make use of the fact that every finite-dimensional vector space has a basis.)

Question 2.3: Suppose F is finite. Consider a system of F -linear equations Ax = y. Thus, x
and y are column vectors over F and A is a matrix over F . Show that, for each y, the number
|{x : Ax = y}| is zero or a power of a prime.

Question 2.4: Consider the linear coding scheme with Hamming matrix

H =

[
1 0 0 1 0
0 1 1 0 1

]
.

(a) Write down the generating matrix G for the coding scheme.

(b) Write down a decoding table, including the column of syndromes.

(c) Encode the message words 100, 110, 111.

(d) For the received words 00011, 00111, 01111, 11111, write down the syndromes, then write
down the decoded words.

(e) What is the rate of the code?

(f) If a single codeword is transmitted, what is the maximum number of errors of transmission
(the maximum number of inversions of binary digits) such that any error can be detected?
What is the maximum number of errors of transmission (the maximum number of inversions
of binary digits) such that any error can be corrected?
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Solutions 2

2.1: Part (a). We have

det(tI + xI + yJ + zK) =

∣∣∣∣ t− ix −y + iz
y + iz t+ ix

∣∣∣∣ = |t+ ix|2 + |y + iz|2 = |q|2 .

Part (b). The required equality follows from part (a) because det(AB) = det(A) det(B)
for 2× 2 matrices A and B over C.

Part (c). By the formula for the inverse of a 2 × 2 matrix with non-zero determinant, if
q ̸= 0, then [

t− ix −y + iz
y + iz t+ ix

]−1

= (t2 + x2 + y2 + z2)−1

[
t+ ix y + iz

−y + iz t− ix

]
and hence q−1 = (t− ix− jy − kz)/(t2 + x2 + y2 = z2).

2.2: Let K be the subring of F generated by the unity element 1F . Let p be the smallest
positive integer such that p1F = 0. Then K is a copy of the ring Z/p of modulo p integers.
For x, y ∈ K, if xy = 0 then x = 0 or y = 0. Therefore, p is prime and K is a field.

We can regard F as a vector space over K with the same addition operation and with
scalar multiplication operation K × F → F coming from the multiplication operation of F .
Letting m be the dimension of F as a K-vector space, then |F | = pm.

2.3: Let S = {x : Ax = y}. We may assume that S ̸= ∅. Let x0 ∈ S. For a column vector
x with the appropriate number of coordinates, we have x ∈ S if and only if x− x0 belongs to
the kernel of A. So |S| = | ker(A)| = |F |null(A). In Question 2, we showed that |F | is a power
of a prime. Therefore, |S| is a power of a prime.

2.4: Part (a). We have G =


1 0 0
0 1 0
0 0 1
1 0 0
0 1 1

.
Part (b). The decoding table is as follows.

000 001 010 011 100 101 110 111 syndrome

00000 00101 01001 01100 10010 10111 11011 11110 00

00001 00100 01000 01101 10011 10110 11010 11111 01
00010 00111 01011 01110 10000 10101 11001 11100 10
00011 00110 01010 01111 10001 10100 11000 11101 11

Part (c). The encodings of 100, 110, 111 are 10010, 11011, 11110, respectively.
Part (d). The received words 00011, 00111, 01111, 11111 have syndromes 11, 10, 11, 01

and decodings 000, 001, 011, 111, respectively
Part (e). The rate is 3/5.
Part (f). The minimum weight of a nonzero codeword is 2. So up to 1 error of transmission

can always be detected, and up to 0 errors of transmission can always be corrected.
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Homework 3: Exercises on the Midterm examinable material on JNF.

Exercise 3.1: Let

A =

1 1 1
0 1 1
0 0 1

 .

Find an invertible matrix P and a matrix E in Jordan normal form such that A = PEP−1.

Exercise 3.2: Let F be an algebraically closed field of characteristic 0. Let V be a finite-
dimensional vector space over F . Let α an operator on V such that αn = idV for some positive
integer n. Show that α is diagonalizable.

Exercise 3.3: Let F be a field of prime characteristic p. Let V be a finite-dimensional vector
space over F . Let α be an operator on V such that αp = idV and any two eigenvectors of α
are F -multiples of each other. Show that dim(V ) ≤ p.

Exercise 3.4: Let F be a field of prime characteristic p. Let V be an F -vector space with a
basis {ei : i ∈ Z/p}. Let α be the operator on V such that α(ei) = ei+1. Extending to the
algebraic closure of F , find the Jordan normal form of α.
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Solutions 3

3.1: Let {e1, e2, e3} be the standard basis for F 3, where F is the scalar field. Plainly, the unique
eigenvalue of A is 1. For any eigenvector f = xe1 + ye2 + ze3 of A, we have x+ y + z = x and
y + z = y, hence y = z = 0. So, putting f1 = (1, 0, 0) then, up to scalar multiples, f1 is the
unique eigenvector of A, and the Jordan normal form of A must be

E =

1 1 0
0 1 1
0 0 1

 .

We see f2 and f3 such that {f1, f2, f3} is a basis for R3, also Af2 = f2 + f1 and Af3 = f3 + f2.
We can put f2 = e2. Writing f3 = (x, y, z) with respect to the standard basis, then

A

xy
z

 = f3 + f2 =

 x
y + 1
z

 .

Equating coordinates, x + y + z = x and y + z = y + 1. So z = 1 and y = −1. We can put
x = 0. Then f3 = (0,−1, 1). The i-th column of p is f1. So

P =

 1 0 0
0 1 0
0 −1 1

 .

3.2: Let Jm(µ) be a Jordan block of α. We must show that m = 1. Suppose otherwise. The
matrix Jm(µ)n = In has (1, 1) entry µn = 1, so µ ̸= 0. The same matrix has (1, 2) entry
nµn−1 = 0. But char(F ) = 0, so µ = 0. This is a contradiction, as required.

3.3: Let β = α − idV . By the Binomial Theorem, βp = 0. So 0 is the unique eigenvalue of
β. The eigenvectors of α are precisely the eigenvectors of β. So (β) = 1. By considering the
extension to the algebraic closeure of F , we reduce to the case where F is algebraically closed,
whereupon condition (β) = 1 implies that the Jordan normal form of β is the Jordan block
Jn(0), with n = dim(V ). But Jn(0)

p = 0, so n ≤ p.

3.4: We have αp = idV . By the Binomial Theorem, Xp − 1 = (X − 1)p as polynomials over
F . So 1 is the unique eigenvalue of α. Let x be an eigenvector and write x =

∑
i xiei with

xi ∈ F . Since α(x) = x, the function i 7→ xi is constant. Therefore dim(E1(α)) = 1 and the
Jordan normal form of α is Jp(1).

6


