Archive for

MATH 525, Group Representations, Fall 2099

Bilkent University, Laurence Barker, 14 January 2024

Source file: arch525spr23.tex

- page 2: Course specification.
- page 4: Presentations.
- page 5: Quizzes.

page 9: Midterm.

page 10: Solutions to Midterm.

page 12: Final.

page 13: Solutions to Final.

MATH 525

Group Representations, Fall 2023

Course specification

Laurence Barker, Bilkent University. Version: 20 December 2023

Classes: Mondays 11:30 - 12:20, Wednesdays 15:30 - 17:20, room SA Z02.

Office Hours: Mondays 10:30 - 11:20, SA 129.

Instructor: Laurence Barker e-mail: barker at fen nokta bilkent nokta edu nokta tr.

Course Texts: The primary course text is:

Peter Webb, "A Course in Finite Group Representation Theory", Cambridge University Press 2016. There is a free PDF download of the prepublication version on the homepage of Peter Webb, University of Minnesota.

For the general ring theory, the recommended text is

T.-Y. Lam, "A First Course in Noncommutative Rings", (Springer, Berlin, 1991).

For further representation theory, a recommended text is

Jean-Paul Serre, Linear Representations of Finite Groups, (Springer, Berlin, 1977).

Homework: Homeworks will be supplied, sometimes in course notes, sometimes in other files on my homepage. They carry no course credit.

Course Documentation: As the course progresses, further documentation will appear on my homepage.

Syllabus: Below is a tentative course schedule. The format of the following details is Week number: Monday date: Subtopics (Section numbers).

Syllabus: The format of the following details is Week number: Monday date: Subtopics.

1: 11 Sept: Groups, rings, modules, representations.

2: 18 Sept: Groups, rings, modules, representations.

3: 25 Sept: General theory of semisimple rings. Maschke's Theorem.

4: 2 Oct: The group algebra

5: 9 Oct: Irreducible characters of semisimple algebras over a field of characteristic 0, in general.

6: 16 Oct: Ordinary character tables for some small finite groups.

7: 23 Oct: Centrally primitive idempotents of semisimple algebras, and the group algebra in particular.

8: 30 Oct: Orthogonality properties of the ordinary character table.

9: 6 Nov: Functors on modules and characters. Frobenius reciprocity.

10: 13 Nov: Constructing character tables using inflation and induction.

11: 20 Nov: Examples of character tables.

12: 27 Nov: Symmetric and alternating squares. Further groups and their character tables.

13: 4 Dec: Integrality properties of ordinary irreducible characters. Central characters.

14: 11 Dec: Burnside's $p^{\alpha}q^{\beta}$ -Theorem and characterization of Frobenius groups.

15: 18 Dec: Review.

Assessment:

- Quizzes, 10%,
- Midterm, 45%, at 20:00 22:00, Thursday, 16 November, in SA-Z03.
- Final, 45%, at 09:00 on Friday, 22 December, in SA-Z19.

An FZ grade will be awarded for Midterm marks that are below 20%.

75% attendance is compulsory.

MATH 525 Presentations, with visitors, Fall 2023

Venue: Thursday, 21 December 2023, Room SA Z01

09:30: Mert Akman, Brauer's characterization of ordinary characters.

10:00: Cabize Kavalcı, Introduction to modular representation theory.

10:30: Mehmet Kirtişoğlu, Independence of projective resolutions for Ext and Tor.

11:00: Esat Akin, The Stone-von Neumann Theorem for the Heisenberg group associated with a finite abelian group.

11:30: Sevket Kaan Alkır, Frobenius algebras.

--- [Lunchtime] ---

- 13:30: Metehan Akkuş, Representations of locally compact groups.
- 14:00: Muhammed Gökman, Representations of Lie groups.

14:30: Enes Koç, Irreducible representations of SO(3).

- 15:00: Onur Ege Erden, Irreducible representations of SU(3).
- 15:30: Cansu Özdemir, Spin representations of 2n-dimensional rotation groups.
- 16:00: Kağan Akman, Clifford's Theorem.
- 16:30: Deniz Özyörük, Tanaka reconstruction.

Quizzes, with solutions

MATH 525, Group Representations, Fall 2023, Laurence Barker

version: 20 December 2023

Quiz 1: Let $G = C_3 = \{1, a, a^2\}$. Observe that the 1-dimensional \mathbb{C} -vector space

$$\mathbb{C}\sum_{g\in G}g=\mathbb{C}(1+a+a^2)$$

is a $\mathbb{C}G$ -submodule of the regular $\mathbb{C}G$ module

$$\mathbb{C}_G \mathbb{C}_G = \mathbb{C}_1 \oplus \mathbb{C}_a \oplus \mathbb{C}_a^2 .$$

Find a basis for a complementary submodule.

Solution: Defining $\omega = e^{2\pi i/3}$, we have

$$\mathbb{C}_G \mathbb{C}_G = \mathbb{C}(1 + a + a^2) \oplus \mathbb{C}(1 + \omega^2 a + \omega a^2) \oplus \mathbb{C}(1 + \omega a + \omega^2 a^2)$$

as a direct sum of 1-dimensional $\mathbb{C}G$ -modules. So the submodule $\mathbb{C}(1 + a + a^2)$ has complementary submodule $\mathbb{C}(1 + \omega^2 a + \omega a^2) \oplus \mathbb{C}(1 + \omega a + \omega^2 a^2)$. One basis for the complementary submodule is the set $\{1 + \omega^2 a + \omega a^2, 1 + \omega a + \omega^2 a^2\}$.

Another basis for the complementary submodule is $\{1 - 2a + a^2, 1 + a - 2a^2\}$.

Comment 1: The above decomposition of $\mathbb{C}G$ already appeared in the answer to Homework Question 1.1 part (b).

Comment 2: For any finite group G and any field K of characteristic 0, the regular KG-module $_{KG}KG$ decomposes as a direct sum of KG-modules

$$_{KG}KG = K \sum_{g \in G} g \oplus \left\{ \sum_{g \in G} \lambda_g g : \sum_{g \in G} \lambda_g = 1 \right\}.$$

Quiz 2: Up to isomorphism, how many 12-dimensional semisimple algebras over \mathbb{C} are there?

Solution: Since \mathbb{C} is algebraically closed, any semisimple algebra over \mathbb{C} is isomorphic to a direct sum of matrix algebras over \mathbb{C} . Therefore, the answer is the number of ways of expressing 12 as a sum of non-increasing squares. The ways of thus expressing 12 are

$$12 = 9 + 3.1 = 3.4 = 2.4 + 4.1 = 4 + 8.1 = 12.1$$
.

Therefore, the answer is 5.

Quiz 2: Advanced version: How many 12-dimensional semisimple algebras over \mathbb{R} are there? You may use a theorem of Frobenius which asserts that every finite-dimensional division algebra over \mathbb{R} is isomorphic to \mathbb{R} or \mathbb{C} or \mathbb{H} .

Solution: Let m denote the answer.

For any natural number n, we define f(n) to be the number of ways of expressing n as a sum of non-increasing squares. A table of values of f(n), for $n \leq 12$, is as follows.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	
f(n)	1	1	1	1	2	2	2	2	3	4	4	4	5	

Given any division ring Δ , then f(n) is the number of isomorphism classes of *n*-dimensional algebras over Δ that can be decomposed as direct sums of matrix algebras. Any 12-dimensional algebra *A* over \mathbb{R} decomposes as $A = A_{\mathbb{H}} \oplus A_{\mathbb{C}} \oplus A_{\mathbb{R}}$ where each A_{Δ} is a direct sum of matrix algebras over Δ . As parameters of *A*, we introduce $a = \dim_{\mathbb{H}}(A_{\mathbb{H}})$ and $b = \dim_{\mathbb{C}}(A_{\mathbb{C}})$ and $c = \dim_{\mathbb{R}}(A_{\mathbb{R}})$. We have 4a+2b+c = 12. For each (a, b, c), the number of possible isomorphism classes for *A* is f(a)f(b)f(c). Therefore,

$$m = \sum_{a,b,c \in \mathbb{N}: a+b+c=12} f(a)f(b)f(c) \ .$$

The possibilities for (a, b, c) and the values of f(a), f(b), f(c) and f(a)f(b)f(c) are as shown.

	$a \mid$	3	2	2	2	1	1	1	1	1	0	0	0	0	0	0	0
	b	0	2	1	0	4	3	2	1	0	6	5	4	3	2	1	0 0
	c	0	0	2	4	0	2	4	6	8	0	2	4	6	8	10	12
	f(a)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	f(b)	1	1	1	1	2	1	1	1	1	2	2	2	1			1
	f(c)	1	1	1	2	2	1	2	2	3	2	2	4	2	3	4	5
f(a)f(b)f(c)	1	1	1	2	2	1	2	2	3	2	2	4	2	3	4	5

Summing the entries of the bottom row, we conclude that m = 37.

Comment: When I set the advanced version of the quiz, I underestimated the answer. When I later solved the quiz, it did take me more than ten minutes.

Quiz 3: Let $G = A_5$, the alternating group of order 60. You may assume that the group algebra $\mathbb{C}G$ has exactly 5 simple modules, up to isomorphism, with dimensions 1, 3, 3, 4, 5. Up to isomorphism, how many simple 6-dimensional $\mathbb{C}G$ -modules are there?

Solution: Write $S_0, ..., S_4$ for representatives of the isomorphism classes of simple $\mathbb{C}G$ -modules, enumerated such that their dimensions are 1, 3, 3, 4, 5, respectively. Any $\mathbb{C}G$ -module M is determined by the multiplicities $m_0, ..., m_4$, where $M \cong m_0 S_0 \oplus ... \oplus m_4 S_4$. Now supposing that dim(M) = 6, then

$$6 = m_0 + 3m_1 + 3m_2 + 4m_3 + 5m_4 \; .$$

The number of possibilities for theisomorphism class of M is the number of natural number solutions $m_0...m_4 = (m_0, ..., m_4)$ to that equation. The solutions are

10001,	20010,	00200,	02000,	01100,	30100),	31000,	60000.
Thus, the ans	wer is 8.				1	3	$\begin{array}{c}2\\3\end{array}$	[g]
Quiz 4: The	ordinary ch	naracter tab	ole of					11071
the group S_3 =	$=\langle a, b: a^3 \rangle$	$\chi(g)$	1	b	a	g		
is as shown. E		. ,	,	χ_0	1	1	1	
numbers λ , μ ,	ν where			χ_1			1	
$(\chi_2)^2 = \lambda \chi_0 +$	$-\mu\chi_1+\nu\chi_2$			χ_2	2	0	-1	

Solution: Let $\psi = (\chi_2)^2$. Now $(\psi(1), \psi(b), \psi(a)) = (4, 0, 1)$. By inspection, $\psi = \chi_0 + \chi_1 + \chi_2$. So $\lambda = \mu = \nu = 1$. *Comment:* We could also directly calculate $\lambda = \langle \chi_0 | \psi \rangle$ and similarly for μ and ν .

Quiz 5: Let $H \leq G$ be finite groups and χ an irreducible $\mathbb{C}G$ -character. Show that there exists an irreducible $\mathbb{C}H$ -character ψ such that $\langle \chi | \operatorname{ind}_{H}^{G}(\psi) \rangle > 0$.

Solution: The regular $\mathbb{C}G$ -character χ^G_{reg} is given by

$$\chi^G_{\rm reg} = \sum_{\chi \in {\rm Irr}(\mathbb{C}G)} \chi(1)\chi$$

From the formula $\chi^G_{\text{reg}}(g) = |G|\delta_{g,1}$, with $g \in G$, we see that $\chi^G_{\text{reg}} = \text{ind}^G_H(\chi^H_{\text{reg}})$. So

$$\sum_{\psi \in \operatorname{Irr}(\mathbb{C}H)} \psi(1) \langle \chi \,|\, \operatorname{ind}_{H}^{G}(\psi) \rangle = \langle \chi \,|\, \operatorname{ind}_{H}^{G}(\chi_{\operatorname{reg}}^{H}) \rangle = \langle \chi \,|\, \chi_{\operatorname{reg}}^{G} \rangle = \chi(1) \;.$$

It follows that $\langle \chi | \operatorname{ind}_{H}^{G}(\psi) \rangle > 0$ for some ψ .

Quiz 6: Consider the group $D_8 = \langle a, b \rangle$ where *a* is a rotation through a quarter of a revolution and *b* is a reflection. The character table of the subgroup $C_4 = \langle a \rangle$ is as follows.

$\chi(g)$	1	a	a^2	a^3	g
ϕ_0	1	1	1	1	
ϕ_1	1	i	-1	-i	
ϕ_2	1	-1	1	-1	
ϕ_3	1	-i	-1	i	

Fill in the entries of the following table of characters induced to D_8 from C_4 .

	1	1	2	2	2	[g]
	1	2	4	2	2	$ \langle g \rangle $
	1	a^2	a	b	ab	g
$\operatorname{ind}(\phi_0)$?	?	?	?	?	
$\operatorname{ind}(\phi_1)$?	?	?	?	?	
$\operatorname{ind}(\phi_2)$?	?	?	?	?	
$\operatorname{ind}(\phi_3)$?	?	?	?	?	

Solution: Using the formula for induced characters, we obtain the following table.

	1	a^2	a	b	ab	g
$\operatorname{ind}(\phi_0)$	2	2	2	0	0	
$ind(\phi_0)$ $ind(\phi_1)$ $ind(\phi_2)$ $ind(\phi_3)$	2	-2	0	0	0	
$\operatorname{ind}(\phi_2)$	2	2	-2	0	0	
$\operatorname{ind}(\phi_3)$	2	-2	0	0	0	

Quiz 7: Let $V = \mathbb{R}^3$ as an $\mathbb{R}S_4$ -module with S_4 transitively permuting the vertices of a regular tetrahedron in V. Enter, into the following table, the values of the $\mathbb{C}S_4$ -character $\chi_{\mathbb{C}V}$ of the $\mathbb{C}S_4$ -module $\mathbb{C}V = \mathbb{C} \otimes_{\mathbb{R}} V$.

Solution: We shall show that the entries are as follows.

	1^{4}	2.1^{2}	2^{2}	3.1	4	g
$\chi_{\mathbb{C}V}$	3	1	-1	0	-1	

The dimension of $\mathbb{C}V$ is $\chi_{\mathbb{C}V}(1) = 3$. The eigenvalues of each reflection 2.1² are 1, 1, -1, which sum to $\chi_{\mathbb{C}V}(2.1^2) = 1$. The eigenvalues of each rotation 2² are 1, -1, -1, which sum to $\chi_{\mathbb{C}V}(2^2) = -1$. The eigenvalues of each rotation 3.1 are 1, ω , ω^2 , where $\omega = e^{2\pi i/3}$, hence $\chi_{\mathbb{C}V}(3.1) = 0$. The eigenvalues of the reflections with shape 4 are -1, *i*, -*i*, which sum to $\chi_{\mathbb{C}V}(4) = -1$.

Alternative solution: Let χ_0 denote the trivial $\mathbb{C}S_4$ -character. The $\mathbb{C}S_4$ -character $\chi_{\mathbb{C}V} + \chi_0$, being the $\mathbb{C}S_4$ -character of the $\mathbb{C}S_4$ -module associated with the natural S_4 -set, has values 4, 2, 0, 1, 0 at 1⁴, 2.1², 2², 3.1, 4, respectively.

Quiz 8: The group $SL_2(3)$ is the group of 2×2 matrices over the field with order 3. We have a semidirect product $SL_2(3) = C_3 \ltimes Q_8$. Let $\omega = e^{2\pi i/3}$. Write *a* for a generator of the subgroup C_3 . Write $Q_8 = \{1, i, j, k, z, iz, jz, kz\}$ in the usual way. We saw in class that part of the character table for $SL_2(3)$ is as follows. (The first 4 rows are inflated from the quotient group $A_4 \cong SL_2(3)/\langle z \rangle$. The first entries of χ_4 , χ_5 , χ_6 rows come from column orthonormality. The second entries of those three rows come from column orthonormality together with the fact that the only possible eigenvalues of the action of z are ± 1 .) Determine the entries labelled s, s', s'', t, t', t''.

	1	1	6	4	4	4	4	[g]
	1	2	4	3	3	6	6	$ \langle g \rangle $
	1	z	i	a	a^2	az	a^2z	g
χ_0	1	1	1	1	1	1	1	
χ_1	1	1	1	ω	ω^2	ω	ω^2	
χ_2	1	1	1	ω^2	ω	ω^2	ω	
χ_3	3	3	-1	0	0	0	0	
χ_4	2	-2	s	t	?	?	?	
χ_5	2	-2	s'	t'	?	?	?	
χ_6	2	-2	s''	t''	?	?	?	

Solution: By column orthogonality, $|s|^2 + |s'|^2 + |s''|^2 = 0$. Therefore, s = s' = s'' = 0.

By column orthonormality, t and t' and t'' cannot all be 0. By considering tensor products with χ_1 and χ_2 , we may assume that $t' = \omega t$ and $t'' = \omega^2 t$. Column orthonormality now gives |t| = 1. But t must also be the sum of two cube roots of unity. We deduce that, numbering χ_4, χ_5, χ_6 suitably, then t = -1 and $t' = -\omega$ and $t'' = -\omega^2$.

Comment: The rest of the character table can now be determined easily, and it is as follows.

	1	z	i	a	a^2	az	a^2z	g
χ_4	2	-2	0	-1	-1	1	1	
χ_5	2	-2	0	$ -\omega $	$-\omega^2$	ω	ω^2	
χ_6	2	$-2 \\ -2$	0	$ -\omega^2 $	$-\omega$	ω^2	ω	

To see this, first note that, for the simple module S with character χ_4 , the eigenvalues of the action of a must be ω and ω^2 , both with multiplicity 1. The eigenvalues of the action of a^2 must be the same. Since z acts on S as negation, the eigenvalues of the action of az must be $-\omega$ and $-\omega^2$, with both multiplicities 1. A similar comment holds for a^2z . All the values for χ_4 are now clear. Using tensor products by χ_1 and χ_2 again, we obtain the remaining entries.

Bilkent Bilkent Bilkent Bilkent

Midterm

13 December 2023, LJB

1: (25 marks.) Let K be a field of characteristic 0. Let G be a finite group. Let A be an algebra over K with a basis consisting of elements e(g) where g runs over the elements of G. Suppose there is a function $\alpha : G \times G \to K - \{0\}$ such that $e(g)e(h) = \alpha(g,h)e(gh)$ for all $g, h \in G$. Show that A is semisimple.

2: (25 marks.) Let F be a field. As an algebra over F, let W be the quotient of the free algebra on X and Y by the ideal generated by YX - XY - 1. Show that W is simple but not semisimple.

3: (25 marks.) Find the ordinary character table of the group A_6 . You may state, without proof, the character tables of smaller finite groups.

4: (25 marks.) Let $H \leq G$ be finite groups and χ a faithful $\mathbb{C}G$ -character (meaning that, as a homomorphism with domain G, the representation associated with χ is injective). Show that H is abelian if and only if, for every irreducible $\mathbb{C}H$ -character ψ satisfying $\langle \psi | \operatorname{res}_{H}^{G}(\chi) \rangle_{H} \neq 0$, we have $\psi(1) = 1$.

Solutions to Midterm

1: We generalize a standard proof of Maschke's Theorem, taking care over some complications that arise. Replacing e(1) with $e(1)/\alpha(1,1)$, we reduce to the case where e(1) is an idempotent. But e(1)A = A, so $e(1) = 1_A$.

We are to show that, given an A-module M with a submodule U, then there exists an A-submodule V of M satisfying $M = U \oplus V$. Let $\pi' : U \leftarrow M$ be any projection. We define $\pi : U \leftarrow M$ such that

$$\pi m = \frac{1}{|G|} \sum_{g \in G} e(g) \pi' e(g)^{-1} m$$

for $m \in M$. If $m \in U$, then each $e(g)m \in U$, hence $\pi' e(g)m = e(g)m$ and we deduce that $\pi m = m$. Therefore, π is a projection with image U.

We have $e(h)^{-1}e(g)^{-1} = \alpha(g,h)^{-1}e(gh)^{-1}$. So, for all $m \in M$ and $g \in G$, we have

$$e(g)\pi e(g)^{-1}m = \frac{1}{|G|}\sum_{h\in G} e(g)e(h)\pi' e(h)^{-1}e(g)^{-1}m = \frac{1}{|G|}\sum_{h\in G} e(gh)\pi' e((gh)^{-1})m = \pi m.$$

Supposing now that $m \in \ker(\pi)$, we deduce that each $e(g)^{-1}m \in \ker(\pi)$. Since $e(g)e(g^{-1}) = \alpha(g, g^{-1})e(1)$, each $e(g)^{-1}$ is a nonzero scalar multiple of $e(g^{-1})$. Therefore, each $e(g)m \in \ker(\pi)$. We have shown that $\ker(\pi)$ is an A-submodule of M. So we can put $V = \ker(\pi)$.

Comment: Such an algebra A is called a **twisted group algebra** over G. Using group cohomology, it can be shown that $A \cong KF\epsilon$ with the following notation. There is a short exact sequence of groups

$$1 \to E \to F \to G \to 1$$

where $E \leq Z(F)$ and E is an isomorphic copy of a finite subgroup of the multiplicative group $K - \{0\}$. Also, ϵ is a primitive idempotent of the commutative group algebra KE. The usual version of Maschke's Theorem already tells us that KF is semisimple. Since $KF = KF\epsilon \oplus KF(1-\epsilon)$, it follows that A is semisimple.

2: Abusing notation, the images of X and Y in W will also be written as X and Y. Any element a of W can be expressed as an F-linear combination of elements having the form X^mY^n . When a is nonzero, we define the **degree** of x to be (m,n) where the coefficient of X^mY^n in a is nonzero, m is maximal and, subject to that, n is maximal. Thus, the degrees (m, n) are ordered lexicographically. Given nonzero elements a and a' of W with degrees (m, n) and (m', n'), respectively, then aa' has degree (m + m', n + n'). Therefore, the units of W are precisely the units of the subalgebra F. Yet W is infinite-dimensional over F. Therefore W cannot be a finite-dimensional matrix algebra over a division ring. In other words, W is not semisimple.

Let I be a nonzero ideal in W. Noting that YX = XY + 1, an inductive argument shows that $YX^m = nX^{m-1} + X^mY$. Hence $Y(X^mY^n) - (X^mY^n)Y = mX^{m-1}Y^n$. Let a be a nonzero element of I with minimal degree (m, n). By considering the element $Ya - aY \in I$, we see that m = 0. By considering the element Xa - aX, we see that n = 0. We have shown that a is a nonzero element of F. Therefore I = W and W is a simple algebra.

3: The ordinary character table of A_6 is as shown on the next page, where $\mu = (1 + \sqrt{5})/2$ and $\nu = (1 - \sqrt{5})/2$ It can be obtained using induction from the subgroups A_5 and S_4 , the latter being embedded via the inclusion $S_4 \leftrightarrow \text{Sym}\{1, 2, 3, 4\} \times \text{Sym}\{5, 6\}$ given by $s \mapsto (s, t(s))$ where t(s) is the transposition if and only if s has odd signature. We omit the details.

	1	45	40	40	90	72	72	[g]
	1^{6}	$2^2.1$	3.1^{2}	3^2	4.2	5.1_{1}	5.1_{2}	$ \langle g \rangle $
χ_0	1	1	1	1	1	1	1	
χ_1	5	1	2	-1	-1	0	0	
χ_2	5	1	-1	2	-1	0	0	
χ_3	8	0	-1	-1	0	μ	ν	
χ_4	8	0	-1	-1	0	ν	μ	
χ_5	9	1	0	0	1	-1	-1	
χ_6	10	-2	1	1	0	0	0	

4: In one direction, the required conclusion is trivial. Conversely, suppose $\psi(1) = 1$ for every ψ appearing in the restriction $\operatorname{res}_{H}^{G}(\chi)$. The representation with domain G associated with χ is injective and must therefore restrict to an injective representation ρ with domain H. Bur ρ is a direct sum of 1-dimensional representations ρ_{ψ} with domain H. We have $1 = \ker(\rho) = \bigcap_{\psi} \ker(\rho_{\psi})$, so H embeds in the direct product of the cyclic groups $H/\ker(\psi)$. We deduce that H is abelian.

MATH 525: Group Representations

Bilkent Bilkent Bilkent Bilkent Bilkent Bilkent

<u>Final</u>

22 December 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

Please write your name on every sheet of paper that you submit.

1: (30 marks.) Four of the irreducible characters of the simple group with order 168 are as follows. Find the last two rows of the character table.

	1	21	56	42	24	24	[g]
	1	2	3	4	7	$\begin{array}{c} 24 \\ 7 \end{array}$	$ \langle g \rangle $
χ_0	1	$\begin{array}{c}1\\2\\-1\\0\end{array}$	1	1	1	1	
χ_1	6	2	0	0	-1	-1	
χ_2	7	-1	1	-1	0	0	
χ_3	8	0	-1	0	1	1	

2: (30 marks.) The generalized quaternion group Q_{16} with order 16 is generated by elements a and b with relations $a^8 = 1$, $b^2 = a^4$, $bab^{-1} = a^{-1}$.

(a) Briefly, check that 1, a^4 , a^2 , b, ab, a, a^3 are representatives of the conjugacy classes.

(b) Find the ordinary character table of $\mathbb{C}Q_{16}$.

3: (20 marks.) Let G be a finite group and χ an irreducible $\mathbb{C}G$ -character. By considering a formula the idempotent of $Z(\mathbb{C}G)$ corresponding to χ , show that $\chi(1)$ divides |G|.

4: (20 marks.) Two algebras A and B over a field are said to be **equivalent** provided there exist positive integers m and n and idempotents $e \in \operatorname{Mat}_m(A)$ and $f \in \operatorname{Mat}_n(B)$ such that $e\operatorname{Mat}_m(A)e \cong B$ and $f\operatorname{Mat}_n(B)f \cong A$. Let $G = S_7$, the symmetric group with degree 7. Up to equivalence, how many algebras are there having the form $\operatorname{End}_{\mathbb{C}G}(M)$ where M is a non-zero finite-dimensional $\mathbb{C}G$ -module?

Solutions to Final

1: We define $z = (-1 + i\sqrt{7})/2 = \zeta + \zeta^2 + \zeta^4$ where $\zeta = e^{2\pi i/7}$. We shall show that the completion of the table is as follows.

	1	$\begin{array}{c} 21 \\ 2 \end{array}$	56	42	24	24	[g]
	1	2	3	4	7	7	$ \langle g \rangle $
χ_4	3	$-1 \\ -1$	1	0	z	z^*	
χ_5	3	-1	1	0	z^*	z	

Let 1, g_2 , g_3 , g_4 , a, b be representatives of the conjugacy classes, in the order of the columns. By orthonormality of the first column, $\chi_4(1)^2 + \chi_5(1)^2 = 168 - 1^2 - 6^2 - 7^2 - 8^2 = 18$. The only possibility is $\chi_4(1) = \chi_5(1) = 3$.

Consider the Sylow 7-subgroup $S = \langle a \rangle$. We have $|C_G(S)| = |C_G(a)| = 168/24 = 7$. So $C_G(S) = S$. But the number *n* of Sylow 7-subgroups of *G* is congruent to 1 modulo 7 and divides 24. Since *G* is simple, $n \neq 1$. Therefore, n = 8. It follows that $|N_G(S)| = 21$. So $N_G(S) \cong C_3 \ltimes S$, the unique non-abelian group with order 21. So the elements *a* and a^2 and a^4 are mutually *G*-conjugate.

Let $\chi_4(a) = \alpha$ and $\chi_5(b) = \beta$. Now α is a sum of three 7-th roots of unity, moreover, if a 7-th root of unity η is an eigenvalue of the action of g_5 on the simple module with character χ_4 , then η^2 and η^4 are eigenvalues of that action. So the only possible values of α and β are 3 or z or z^{*}. If $\alpha = \beta = 3$, then the column orthonormality for [a] fails. So at least one of α and β must be z or z^{*}. But z and z^{*} are non-real, so χ_4 and χ_5 must be complex conjugates and $\{\alpha, \beta\} = \{z, z^*\}$. Renumbering χ_4 and χ_5 if necessary, we may assume that $\alpha = z$ and $\beta = z^*$. Then $\chi_4(b) = z^*$ and $\chi_5(b) = z$. For $k \in \{2, 3, 4\}$, we have $\chi_4(k) = \chi_5(k)$, which can be evaluated using orthogonality with the first column.

Alternative: It can be shown (though the candidates were not expected to know it), that the group $G \cong \operatorname{GL}_3(2) \cong PSL_2(7)$ has an outer automorphism σ that interchanges the two conjugacy classes of elements with order 7. Using that fact, the following quicker argument becomes available. Since χ_0 , χ_1 , χ_2 , χ_3 are constant on the elements with order 7, we may assume that $\chi_4(b) \neq \alpha$. Then σ must interchange χ_4 and χ_5 , hence $\chi_4(b) = \beta$ and $\chi_5(b) = \alpha$. Then it is straightforward to determine α and β using column orthonormality.

2: Part (a). Noting that $ba^k = a^{-k}b$ for $k \in \mathbb{Z}$, we see that the conjugacy classes in Q_{16} are $\{b, a^2b, a^4b, a^6b\}$ and $\{ab, a^3b, a^5b, a^7b\}$ and those of the form $\{a^k, a^{-k}\}$.

Part (b). The character table is as shown.

	1	1	2	4	4	2	2	[g]
	1	2	4	4	4	8	8	$ \langle g \rangle $
	1	a^4	a^2	b	ab	a	a^3	g
χ_0	1	1	1	1	1	1	1	
χ_1	1	1	1	-1	-1	1	1	
χ_2	1	1	1	1	-1	-1	-1	
χ_3	1	1	1	-1	1	-1	-1	
χ_4	2	2	-2	0	0	0	0	
χ_5	2	-2	0	0	0	$\sqrt{2}$	$-\sqrt{2}$	
χ_6	2	-2	0	0	0	$-\sqrt{2}$	$\sqrt{2}$	

The first 5 irreducible characters in the table are inflated from the quotient $Q_{16}/\langle a^4 \rangle \cong D_8$. The remaining characters χ_5 and χ_6 are induced from the faithful irreducible characters of the subgroup $\langle a \rangle \cong C_8$. An easy calculation of inner products confirms that χ_5 and χ_6 are irreducible.

3: For a contradiction, suppose that some prime p has higher multiplicity in $\chi(1)$ than in |G|. The primitive idempotent of $Z(\mathbb{C}G)$ associated with χ is

$$e_{\chi} = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g^{-1})g$$
.

For any positive integer n, we have

$$e_{\chi} = e_{\chi}^{n+2} = \left(\frac{\chi(1)}{|G|}\right)^{n+2} \sum_{g} \lambda(g)g$$

for some algebraic integers $\lambda(g)$. Equating coefficients of the identity element, then multiplying by $|G|^{n+2}$, we obtain

$$\chi(1)^n \lambda(1) = |G|^{n+1}$$

But this equation cannot hold when p^n does not divide |G|.

4: Given $\mathbb{C}G$ -modules M and M', then $\operatorname{End}_{\mathbb{C}G}(M) \equiv \operatorname{End}_{\mathbb{C}G}(M')$ if and only if $\operatorname{End}_{\mathbb{C}G}(M)$ and $\operatorname{End}_{\mathbb{C}G}(M')$ have the same number of Wedderburn components. Letting M run over all the non-zero finite-dimensional $\mathbb{C}G$ -modules, then the number n(M) of Wedderburn components of $\operatorname{End}_{\mathbb{C}G}(M)$ is equal to the number of mutually non-isomorphic simple composition factors of M. So the number of possibilities for n(M) is the number of simple $\mathbb{C}G$ -modules up to isomorphism. That is equal to the number of conjugacy classes of G, in other words, the number of partitions of 7. Those partitions are

 $1^7, 2.1^5, 2^2.1^3, 2^3.1, 3.1^4, 3.2.1^2, 3.2^2, 3^2.1, 4.1^3, 4.2.1, 4.3, 5.1^2, 5.2, 6.1, 7.$

Therefore, the answer is 15.