Archive for
 $\underline{\underline{\text { MATH 525, Group Representations, Fall } 2099}}$

Bilkent University, Laurence Barker, 14 January 2024

Source file: arch525spr23.tex
page 2: Course specification.
page 4: Presentations.
page 5: Quizzes.
page 9: Midterm.
page 10: Solutions to Midterm.
page 12: Final.
page 13: Solutions to Final.

MATH 525
 Group Representations, Fall 2023
 Course specification

Laurence Barker, Bilkent University. Version: 20 December 2023

Classes: Mondays 11:30-12:20, Wednesdays 15:30-17:20, room SA Z02.
Office Hours: Mondays 10:30-11:20, SA 129.
Instructor: Laurence Barker
e-mail: barker at fen nokta bilkent nokta edu nokta tr.
Course Texts: The primary course text is:
Peter Webb, "A Course in Finite Group Representation Theory", Cambridge University Press 2016. There is a free PDF download of the prepublication version on the homepage of Peter Webb, University of Minnesota.

For the general ring theory, the recommended text is
T.-Y. Lam, "A First Course in Noncommutative Rings", (Springer, Berlin, 1991).

For further representation theory, a recommended text is
Jean-Paul Serre, Linear Representations of Finite Groups, (Springer, Berlin, 1977).

Homework: Homeworks will be supplied, sometimes in course notes, sometimes in other files on my homepage. They carry no course credit.

Course Documentation: As the course progresses, further documentation will appear on my homepage.

Syllabus: Below is a tentative course schedule. The format of the following details is Week number: Monday date: Subtopics (Section numbers).

Syllabus: The format of the following details is Week number: Monday date: Subtopics.
1: 11 Sept: Groups, rings, modules, representations.
2: 18 Sept: Groups, rings, modules, representations.
3: 25 Sept: General theory of semisimple rings. Maschke's Theorem.
4: 2 Oct: The group algebra

5: 9 Oct: Irreducible characters of semisimple algebras over a field of characteristic 0 , in general.

6: 16 Oct: Ordinary character tables for some small finite groups.
7: 23 Oct: Centrally primitive idempotents of semisimple algebras, and the group algebra in particular.

8: 30 Oct: Orthogonality properties of the ordinary character table.
9: 6 Nov: Functors on modules and characters. Frobenius reciprocity.
10: 13 Nov: Constructing character tables using inflation and induction.
11: 20 Nov: Examples of character tables.
12: 27 Nov: Symmetric and alternating squares. Further groups and their character tables.
13: 4 Dec: Integrality properties of ordinary irreducible characters. Central characters.
14: 11 Dec: Burnside's $p^{\alpha} q^{\beta}$-Theorem and characterization of Frobenius groups.
15: 18 Dec: Review.

Assessment:

- Quizzes, 10%,
- Midterm, 45\%, at 20:00-22:00, Thursday, 16 November, in SA-Z03.
- Final, 45\%, at 09:00 on Friday, 22 December, in SA-Z19.

An FZ grade will be awarded for Midterm marks that are below 20%. 75% attendance is compulsory.

MATH 525 Presentations, with visitors, Fall 2023

Venue: Thursday, 21 December 2023, Room SA Z01

09:30: Mert Akman, Brauer's characterization of ordinary characters.
10:00: Cabize Kavalcı, Introduction to modular representation theory.
10:30: Mehmet Kirtişoğlu, Independence of projective resolutions for Ext and Tor.
11:00: Esat Akin, The Stone-von Neumann Theorem for the Heisenberg group associated with a finite abelian group.

11:30: Sevket Kaan Alkır, Frobenius algebras.

- - [Lunchtime $]-$ -

13:30: Metehan Akkuş, Representations of locally compact groups.
14:00: Muhammed Gökman, Representations of Lie groups.
14:30: Enes Koç, Irreducible representations of $\mathrm{SO}(3)$.
15:00: Onur Ege Erden, Irreducible representations of $\mathrm{SU}(3)$.
15:30: Cansu Özdemir, Spin representations of $2 n$-dimensional rotation groups.
16:00: Kağan Akman, Clifford's Theorem.
16:30: Deniz Özyörük, Tanaka reconstruction.

Quizzes, with solutions

MATH 525, Group Representations, Fall 2023, Laurence Barker

version: 20 December 2023

Quiz 1: Let $G=C_{3}=\left\{1, a, a^{2}\right\}$. Observe that the 1-dimensional \mathbb{C}-vector space

$$
\mathbb{C} \sum_{g \in G} g=\mathbb{C}\left(1+a+a^{2}\right)
$$

is a $\mathbb{C} G$-submodule of the regular $\mathbb{C} G$ module

$$
\mathbb{C} G \mathbb{C} G=\mathbb{C} 1 \oplus \mathbb{C} a \oplus \mathbb{C} a^{2}
$$

Find a basis for a complementary submodule.
Solution: Defining $\omega=e^{2 \pi i / 3}$, we have

$$
\mathbb{C} G \mathbb{C} G=\mathbb{C}\left(1+a+a^{2}\right) \oplus \mathbb{C}\left(1+\omega^{2} a+\omega a^{2}\right) \oplus \mathbb{C}\left(1+\omega a+\omega^{2} a^{2}\right)
$$

as a direct sum of 1 -dimensional $\mathbb{C} G$-modules. So the submodule $\mathbb{C}\left(1+a+a^{2}\right)$ has complementary submodule $\mathbb{C}\left(1+\omega^{2} a+\omega a^{2}\right) \oplus \mathbb{C}\left(1+\omega a+\omega^{2} a^{2}\right)$. One basis for the complementary submodule is the set $\left\{1+\omega^{2} a+\omega a^{2}, 1+\omega a+\omega^{2} a^{2}\right\}$.

Another basis for the complementary submodule is $\left\{1-2 a+a^{2}, 1+a-2 a^{2}\right\}$.
Comment 1: The above decomposition of $\mathbb{C} G$ already appeared in the answer to Homework Question 1.1 part (b).

Comment 2: For any finite group G and any field K of characteristic 0 , the regular $K G$-module ${ }_{K} K K G$ decomposes as a direct sum of $K G$-modules

$$
{ }_{K G} K G=K \sum_{g \in G} g \oplus\left\{\sum_{g \in G} \lambda_{g} g: \sum_{g \in G} \lambda_{g}=1\right\} .
$$

Quiz 2: Up to isomorphism, how many 12 -dimensional semisimple algebras over \mathbb{C} are there?
Solution: Since \mathbb{C} is algebraically closed, any semisimple algebra over \mathbb{C} is isomorphic to a direct sum of matrix algebras over \mathbb{C}. Therefore, the answer is the number of ways of expressing 12 as a sum of non-increasing squares. The ways of thus expressing 12 are

$$
12=9+3.1=3.4=2.4+4.1=4+8.1=12.1 .
$$

Therefore, the answer is 5 .
Quiz 2: Advanced version: How many 12-dimensional semisimple algebras over \mathbb{R} are there? You may use a theorem of Frobenius which asserts that every finite-dimensional division algebra over \mathbb{R} is isomorphic to \mathbb{R} or \mathbb{C} or \mathbb{H}.

Solution: Let m denote the answer.
For any natural number n, we define $f(n)$ to be the number of ways of expressing n as a sum of non-increasing squares. A table of values of $f(n)$, for $n \leq 12$, is as follows.

$$
\begin{array}{r||cccc|cccc|c|ccc|c|}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
f(n) & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 4 & 4 & 4 & 5
\end{array}
$$

Given any division ring Δ, then $f(n)$ is the number of isomorphism classes of n-dimensional algebras over Δ that can be decomposed as direct sums of matrix algebras. Any 12-dimensional algebra A over \mathbb{R} decomposes as $A=A_{\mathbb{H}} \oplus A_{\mathbb{C}} \oplus A_{\mathbb{R}}$ where each A_{Δ} is a direct sum of matrix algebras over Δ. As parameters of A, we introduce $a=\operatorname{dim}_{\mathbb{H}}\left(A_{\mathbb{H}}\right)$ and $b=\operatorname{dim}_{\mathbb{C}}\left(A_{\mathbb{C}}\right)$ and $c=\operatorname{dim}_{\mathbb{R}}\left(A_{\mathbb{R}}\right)$. We have $4 a+2 b+c=12$. For each (a, b, c), the number of possible isomorphism classes for A is $f(a) f(b) f(c)$. Therefore,

$$
m=\sum_{a, b, c \in \mathbb{N}: a+b+c=12} f(a) f(b) f(c)
$$

The possibilities for (a, b, c) and the values of $f(a), f(b), f(c)$ and $f(a) f(b) f(c)$ are as shown.

a	3	2	2	2	1	1	1	1	1	0	0	0	0	0	0	0
b	0	2	1	0	4	3	2	1	0	6	5	4	3	2	1	0
c	0	0	2	4	0	2	4	6	8	0	2	4	6	8	10	12
$f(a)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$f(b)$	1	1	1	1	2	1	1	1	1	2	2	2	1	1	1	1
$f(c)$	1	1	1	2	2	1	2	2	3	2	2	4	2	3	4	5
$f(a) f(b) f(c)$	1	1	1	2	2	1	2	2	3	2	2	4	2	3	4	5

Summing the entries of the bottom row, we conclude that $m=37$.
Comment: When I set the advanced version of the quiz, I underestimated the answer. When I later solved the quiz, it did take me more than ten minutes.

Quiz 3: Let $G=A_{5}$, the alternating group of order 60 . You may assume that the group algebra $\mathbb{C} G$ has exactly 5 simple modules, up to isomorphism, with dimensions $1,3,3,4,5$. Up to isomorphism, how many simple 6 -dimensional $\mathbb{C} G$-modules are there?

Solution: Write S_{0}, \ldots, S_{4} for representatives of the isomorphism classes of simple $\mathbb{C} G$-modules, enumerated such that their dimensions are $1,3,3,4,5$, respectively. Any $\mathbb{C} G$-module M is determined by the multiplicities m_{0}, \ldots, m_{4}, where $M \cong m_{0} S_{0} \oplus \ldots \oplus m_{4} S_{4}$. Now supposing that $\operatorname{dim}(M)=6$, then

$$
6=m_{0}+3 m_{1}+3 m_{2}+4 m_{3}+5 m_{4}
$$

The number of possibilities for theisomorphism class of M is the number of natural number solutions $m_{0} \ldots m_{4}=\left(m_{0}, \ldots, m_{4}\right)$ to that equation. The solutions are

$$
\text { 10001, 20010, } 00200, \quad 02000, \quad 01100, \quad 30100, \quad 31000,60000 .
$$

Thus, the answer is 8 .
Quiz 4: The ordinary character table of the group $S_{3}=\left\langle a, b: a^{3}=b^{2}=(a b)^{2}\right\rangle$ is as shown. Evaluate the natural numbers λ, μ, ν where $\left(\chi_{2}\right)^{2}=\lambda \chi_{0}+\mu \chi_{1}+\nu \chi_{2}$.

	1	3	2	$\|[g]\|$
$\chi(g)$	1	2	3	$\|\langle g\rangle\|$
χ_{0}	1	b	a	g
χ_{1}	1	-1	1	
χ_{2}	2	0	-1	

Solution: Let $\psi=\left(\chi_{2}\right)^{2}$. Now $(\psi(1), \psi(b), \psi(a))=(4,0,1)$. By inspection, $\psi=\chi_{0}+\chi_{1}+\chi_{2}$. So $\lambda=\mu=\nu=1$.

Comment: We could also directly calculate $\lambda=\left\langle\chi_{0} \mid \psi\right\rangle$ and similarly for μ and ν.
Quiz 5: Let $H \leq G$ be finite groups and χ an irreducible $\mathbb{C} G$-character. Show that there exists an irreducible $\mathbb{C} H$-character ψ such that $\left\langle\chi \mid \operatorname{ind}_{H}^{G}(\psi)\right\rangle>0$.
Solution: The regular $\mathbb{C} G$-character $\chi_{\text {reg }}^{G}$ is given by

$$
\chi_{\mathrm{reg}}^{G}=\sum_{\chi \in \operatorname{Irr}(\mathbb{C} G)} \chi(1) \chi .
$$

From the formula $\chi_{\text {reg }}^{G}(g)=|G| \delta_{g, 1}$, with $g \in G$, we see that $\chi_{\text {reg }}^{G}=\operatorname{ind}_{H}^{G}\left(\chi_{\text {reg }}^{H}\right)$. So

$$
\sum_{\psi \in \operatorname{Irr}(\mathbb{C} H)} \psi(1)\left\langle\chi \mid \operatorname{ind}_{H}^{G}(\psi)\right\rangle=\left\langle\chi \mid \operatorname{ind}_{H}^{G}\left(\chi_{\mathrm{reg}}^{H}\right)\right\rangle=\left\langle\chi \mid \chi_{\mathrm{reg}}^{G}\right\rangle=\chi(1) .
$$

It follows that $\left\langle\chi \mid \operatorname{ind}_{H}^{G}(\psi)\right\rangle>0$ for some ψ.
Quiz 6: Consider the group $D_{8}=\langle a, b\rangle$ where a is a rotation through a quarter of a revolution and b is a reflection. The character table of the subgroup $C_{4}=\langle a\rangle$ is as follows.

$\chi(g)$	1	a	a^{2}	a^{3}	g
ϕ_{0}	1	1	1	1	
ϕ_{1}	1	i	-1	$-i$	
ϕ_{2}	1	-1	1	-1	
ϕ_{3}	1	$-i$	-1	i	

Fill in the entries of the following table of characters induced to D_{8} from C_{4}.

	1	1	2	2	2	$\|[g]\|$
	1	2	4	2	2	$\|\langle g\rangle\|$
	1	a^{2}	a	b	$a b$	g
$\operatorname{ind}\left(\phi_{0}\right)$	$?$	$?$	$?$	$?$	$?$	
$\operatorname{ind}\left(\phi_{1}\right)$	$?$	$?$	$?$	$?$	$?$	
$\operatorname{ind}\left(\phi_{2}\right)$	$?$	$?$	$?$	$?$	$?$	
$\operatorname{ind}\left(\phi_{3}\right)$	$?$	$?$	$?$	$?$	$?$	

Solution: Using the formula for induced characters, we obtain the following table.

	1	a^{2}	a	b	$a b$	g
$\operatorname{ind}\left(\phi_{0}\right)$	2	2	2	0	0	
$\operatorname{ind}\left(\phi_{1}\right)$	2	-2	0	0	0	
$\operatorname{ind}\left(\phi_{2}\right)$	2	2	-2	0	0	
$\operatorname{ind}\left(\phi_{3}\right)$	2	-2	0	0	0	

Quiz 7: Let $V=\mathbb{R}^{3}$ as an $\mathbb{R} S_{4}$-module with S_{4} transitively permuting the vertices of a regular tetrahedron in V. Enter, into the following table, the values of the $\mathbb{C} S_{4}$-character $\chi_{\mathbb{C} V}$ of the $\mathbb{C} S_{4}$-module $\mathbb{C} V=\mathbb{C} \otimes_{\mathbb{R}} V$.

	1^{4}	2.1^{2}	2^{2}	3.1	4	g
$\chi_{\mathbb{C} V}$	$?$	$?$	$?$	$?$	$?$	

Solution: We shall show that the entries are as follows.

	1^{4}	2.1^{2}	2^{2}	3.1	4	g
$\chi_{\mathbb{C} V}$	3	1	-1	0	-1	

The dimension of $\mathbb{C} V$ is $\chi_{\mathbb{C} V}(1)=3$. The eigenvalues of each reflection 2.1^{2} are $1,1,-1$, which sum to $\chi_{\mathbb{C} V}\left(2.1^{2}\right)=1$. The eigenvalues of each rotation 2^{2} are $1,-1,-1$, which sum to $\chi_{\mathbb{C} V}\left(2^{2}\right)=-1$. The eigenvalues of each rotation 3.1 are $1, \omega, \omega^{2}$, where $\omega=e^{2 \pi i / 3}$, hence $\chi_{\mathbb{C} V}(3.1)=0$. The eigenvalues of the reflections with shape 4 are $-1, i,-i$, which sum to $\chi_{\mathbb{C} V}(4)=-1$.

Alternative solution: Let χ_{0} denote the trivial $\mathbb{C} S_{4}$-character. The $\mathbb{C} S_{4}$-character $\chi_{\mathbb{C} V}+\chi_{0}$, being the $\mathbb{C} S_{4}$-character of the $\mathbb{C} S_{4}$-module associated with the natural S_{4}-set, has values 4 , $2,0,1,0$ at $1^{4}, 2.1^{2}, 2^{2}, 3.1,4$, respectively.

Quiz 8: The group $\mathrm{SL}_{2}(3)$ is the group of 2×2 matrices over the field with order 3 . We have a semidirect product $\mathrm{SL}_{2}(3)=C_{3} \ltimes Q_{8}$. Let $\omega=e^{2 \pi i / 3}$. Write a for a generator of the subgroup C_{3}. Write $Q_{8}=\{1, i, j, k, z, i z, j z, k z\}$ in the usual way. We saw in class that part of the character table for $\mathrm{SL}_{2}(3)$ is as follows. (The first 4 rows are inflated from the quotient group $A_{4} \cong \mathrm{SL}_{2}(3) /\langle z\rangle$. The first entries of $\chi_{4}, \chi_{5}, \chi_{6}$ rows come from column orthonormality. The second entries of those three rows come from column orthonormality together with the fact that the only possible eigenvalues of the action of z are ± 1.) Determine the entries labelled s, $s^{\prime}, s^{\prime \prime}, t, t^{\prime}, t^{\prime \prime}$.

	1	1	6	4	4	4	4	$\|\|g g\|\|$
	1	2	4	3	3	6	6	$\|\langle g\rangle\|$
	1	z	i	a	a^{2}	$a z$	$a^{2} z$	g
χ_{0}	1	1	1	1	1	1	1	
χ_{1}	1	1	1	ω	ω^{2}	ω	ω^{2}	
χ_{2}	1	1	1	ω^{2}	ω	ω^{2}	ω	
χ_{3}	3	3	-1	0	0	0	0	
χ_{4}	2	-2	s	t	$?$	$?$	$?$	
χ_{5}	2	-2	s^{\prime}	t^{\prime}	$?$	$?$	$?$	$?$
χ_{6}	2	-2	$s^{\prime \prime}$	$t^{\prime \prime}$	$?$	$?$	$?$	

Solution: By column orthogonality, $\left|s^{2}+\left|s^{\prime}\right|^{2}+\left|s^{\prime \prime}\right|^{2}=0\right.$. Therefore, $s=s^{\prime}=s^{\prime \prime}=0$.
By column orthonormality, t and t^{\prime} and $t^{\prime \prime}$ cannot all be 0 . By considering tensor products with χ_{1} and χ_{2}, we may assume that $t^{\prime}=\omega t$ and $t^{\prime \prime}=\omega^{2} t$. Column orthonormality now gives $|t|=1$. But t must also be the sum of two cube roots of unity. We deduce that, numbering $\chi_{4}, \chi_{5}, \chi_{6}$ suitably, then $t=-1$ and $t^{\prime}=-\omega$ and $t^{\prime \prime}=-\omega^{2}$.

Comment: The rest of the character table can now be determined easily, and it is as follows.

	1	z	i	a	a^{2}	$a z$	$a^{2} z$	g
χ_{4}	2	-2	0	-1	-1	1	1	
χ_{5}	2	-2	0	$-\omega$	$-\omega^{2}$	ω	ω^{2}	
χ_{6}	2	-2	0	$-\omega^{2}$	$-\omega$	ω^{2}	ω	ω

To see this, first note that, for the simple module S with character χ_{4}, the eigenvalues of the action of a must be ω and ω^{2}, both with multiplicity 1 . The eigenvalues of the action of a^{2} must be the same. Since z acts on S as negation, the eigenvalues of the action of $a z$ must be $-\omega$ and $-\omega^{2}$, with both multiplicities 1. A similar comment holds for $a^{2} z$. All the values for χ_{4} are now clear. Using tensor products by χ_{1} and χ_{2} again, we obtain the remaining entries.

MATH 525: Group Representations

Midterm

13 December 2023, LJB

1: (25 marks.) Let K be a field of characteristic 0 . Let G be a finite group. Let A be an algebra over K with a basis consiting of elements $e(g)$ where g runs over the elements of G. Suppose there is a function $\alpha: G \times G \rightarrow K-\{0\}$ such that $e(g) e(h)=\alpha(g, h) e(g h)$ for all $g, h \in G$. Show that A is semisimple.

2: (25 marks.) Let F be a field. As an algebra over F, let W be the quotient of the free algebra on X and Y by the ideal generated by $Y X-X Y-1$. Show that W is simple but not semisimple.

3: (25 marks.) Find the ordinary character table of the group A_{6}. You may state, without proof, the character tables of smaller finite groups.

4: (25 marks.) Let $H \leq G$ be finite groups and χ a faithful $\mathbb{C} G$-character (meaning that, as a homomorphism with domain G, the representation associated with χ is injective). Show that H is abelian if and only if, for every irreducible $\mathbb{C} H$-character ψ satisfying $\left\langle\psi \mid \operatorname{res}_{H}^{G}(\chi)\right\rangle_{H} \neq 0$, we have $\psi(1)=1$.

Solutions to Midterm

1: We generalize a standard proof of Maschke's Theorem, taking care over some complications that arise. Replacing $e(1)$ with $e(1) / \alpha(1,1)$, we reduce to the case where $e(1)$ is an idempotent. But $e(1) A=A$, so $e(1)=1_{A}$.

We are to show that, given an A-module M with a submodule U, then there exists an A-submodule V of M satisfying $M=U \oplus V$. Let $\pi^{\prime}: U \leftarrow M$ be any projection. We define $\pi: U \leftarrow M$ such that

$$
\pi m=\frac{1}{|G|} \sum_{g \in G} e(g) \pi^{\prime} e(g)^{-1} m
$$

for $m \in M$. If $m \in U$, then each $e(g) m \in U$, hence $\pi^{\prime} e(g) m=e(g) m$ and we deduce that $\pi m=m$. Therefore, π is a projection with image U.

We have $e(h)^{-1} e(g)^{-1}=\alpha(g, h)^{-1} e(g h)^{-1}$. So, for all $m \in M$ and $g \in G$, we have

$$
e(g) \pi e(g)^{-1} m=\frac{1}{|G|} \sum_{h \in G} e(g) e(h) \pi^{\prime} e(h)^{-1} e(g)^{-1} m=\frac{1}{|G|} \sum_{h \in G} e(g h) \pi^{\prime} e\left((g h)^{-1}\right) m=\pi m .
$$

Suppposing now that $m \in \operatorname{ker}(\pi)$, we deduce that each $e(g)^{-1} m \in \operatorname{ker}(\pi)$. Since $e(g) e\left(g^{-1}\right)=$ $\alpha\left(g, g^{-1}\right) e(1)$, each $e(g)^{-1}$ is a nonzero scalar multiple of $e\left(g^{-1}\right)$. Therefore, each $e(g) m \in$ $\operatorname{ker}(\pi)$. We have shown that $\operatorname{ker}(\pi)$ is an A-submodule of M. So we can put $V=\operatorname{ker}(\pi)$.
Comment: Such an algebra A is called a twisted group algebra over G. Using group cohomology, it can be shown that $A \cong K F \epsilon$ with the following notation. There is a short exact sequence of groups

$$
1 \rightarrow E \rightarrow F \rightarrow G \rightarrow 1
$$

where $E \leq Z(F)$ and E is an isomorphic copy of a finite subgroup of the multiplicative group $K-\{0\}$. Also, ϵ is a primitive idempotent of the commutative group algebra $K E$. The usual version of Maschke's Theorem already tells us that $K F$ is semisimple. Since $K F=$ $K F \epsilon \oplus K F(1-\epsilon)$, it follows that A is semisimple.

2: Abusing notation, the images of X and Y in W will also be written as X and Y. Any element a of W can be expressed as an F-linear combination of elements having the form $X^{m} Y^{n}$. When a is nonzero, we define the degree of x to be (m, n) where the coefficient of $X^{m} Y^{n}$ in a is nonzero, m is maximal and, subject to that, n is maximal. Thus, the degrees (m, n) are ordered lexicographically. Given nonzero elements a and a^{\prime} of W with degrees (m, n) and (m^{\prime}, n^{\prime}), respectively, then $a a^{\prime}$ has degree ($m+m^{\prime}, n+n^{\prime}$). Therefore, the units of W are precisely the units of the subalgebra F. Yet W is infinite-dimensional over F. Therefore W cannot be a finite-dimensional matrix algebra over a division ring. In other words, W is not semisimple.

Let I be a nonzero ideal in W. Noting that $Y X=X Y+1$, an inductive argument shows that $Y X^{m}=n X^{m-1}+X^{m} Y$. Hence $Y\left(X^{m} Y^{n}\right)-\left(X^{m} Y^{n}\right) Y=m X^{m-1} Y^{n}$. Let a be a nonzero element of I with minimal degree (m, n). By considering the element $Y a-a Y \in I$, we see that $m=0$. By considering the element $X a-a X$, we see that $n=0$. We have shown that a is a nonzero element of F. Therefore $I=W$ and W is a simple algebra.
3: The ordinary character table of A_{6} is as shown on the next page, where $\mu=(1+\sqrt{5}) / 2$ and $\nu=(1-\sqrt{5}) / 2$ It can be obtained using induction from the subgroups A_{5} and S_{4}, the
latter being embedded via the inclusion $S_{4} \hookleftarrow \operatorname{Sym}\{1,2,3,4\} \times \operatorname{Sym}\{5,6\}$ given by $s \mapsto(s, t(s))$ where $t(s)$ is the transposition if and only if s has odd signature. We omit the details.

	1	45	40	40	90	72	72	$\|[g]\|$
	1^{6}	$2^{2} .1$	3.1^{2}	3^{2}	4.2	5.1_{1}	5.1_{2}	$\|\langle g\rangle\|$
χ_{0}	1	1	1	1	1	1	1	
χ_{1}	5	1	2	-1	-1	0	0	
χ_{2}	5	1	-1	2	-1	0	0	
χ_{3}	8	0	-1	-1	0	μ	ν	
χ_{4}	8	0	-1	-1	0	ν	μ	
χ_{5}	9	1	0	0	1	-1	-1	
χ_{6}	10	-2	1	1	0	0	0	

4: In one direction, the required conclusion is trivial. Conversely, suppose $\psi(1)=1$ for every ψ appearing in the restriction $\operatorname{res}_{H}^{G}(\chi)$. The representation with domain G associated with χ is injective and must therefore restrict to an injective representation ρ with domain H. Bur ρ is a direct sum of 1 -dimensional representations ρ_{ψ} with domain H. We have $1=\operatorname{ker}(\rho)=\bigcap_{\psi} \operatorname{ker}\left(\rho_{\psi}\right)$, so H embeds in the direct product of the cyclic groups $H / \operatorname{ker}(\psi)$. We deduce that H is abelian.

Final

22 December 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.
Please write your name on every sheet of paper that you submit.

1: (30 marks.) Four of the irreducible characters of the simple group with order 168 are as follows. Find the last two rows of the character table.

	1	21	56	42	24	24	$\|[g]\|$
	1	2	3	4	7	7	$\|\langle g\rangle\|$
χ_{0}	1	1	1	1	1	1	
χ_{1}	6	2	0	0	-1	-1	
χ_{2}	7	-1	1	-1	0	0	
χ_{3}	8	0	-1	0	1	1	

2: (30 marks.) The generalized quaternion group Q_{16} with order 16 is generated by elements a and b with relations $a^{8}=1, b^{2}=a^{4}, b a b^{-1}=a^{-1}$.
(a) Briefly, check that $1, a^{4}, a^{2}, b, a b, a, a^{3}$ are representatives of the conjugacy classes.
(b) Find the ordinary character table of $\mathbb{C} Q_{16}$.

3: (20 marks.) Let G be a finite group and χ an irreducible $\mathbb{C} G$-character. By considering a formula the idempotent of $Z(\mathbb{C} G)$ corresponding to χ, show that $\chi(1)$ divides $|G|$.

4: (20 marks.) Two algebras A and B over a field are said to be equivalent provided there exist positive integers m and n and idempotents $e \in \operatorname{Mat}_{m}(A)$ and $f \in \operatorname{Mat}_{n}(B)$ such that $e \operatorname{Mat}_{m}(A) e \cong B$ and $f \operatorname{Mat}_{n}(B) f \cong A$. Let $G=S_{7}$, the symmetric group with degree 7 . Up to equivalence, how many algebras are there having the form $\operatorname{End}_{\mathbb{C} G}(M)$ where M is a non-zero finite-dimensional $\mathbb{C} G$-module?

Solutions to Final

1: We define $z=(-1+i \sqrt{7}) / 2=\zeta+\zeta^{2}+\zeta^{4}$ where $\zeta=e^{2 \pi i / 7}$. We shall show that the completion of the table is as follows.

	1	21	56	42	24	24	$\|[g]\|$
	1	2	3	4	7	7	$\|\langle g\rangle\|$
χ_{4}	3	-1	1	0	z	z^{*}	
χ_{5}	3	-1	1	0	z^{*}	z	

Let $1, g_{2}, g_{3}, g_{4}, a, b$ be representatives of the conjugacy classes, in the order of the columns. By orthonormality of the first column, $\chi_{4}(1)^{2}+\chi_{5}(1)^{2}=168-1^{2}-6^{2}-7^{2}-8^{2}=18$. The only possibility is $\chi_{4}(1)=\chi_{5}(1)=3$.

Consider the Sylow 7-subgroup $S=\langle a\rangle$. We have $\left|C_{G}(S)\right|=\left|C_{G}(a)\right|=168 / 24=7$. So $C_{G}(S)=S$. But the number n of Sylow 7 -subgroups of G is congruent to 1 modulo 7 and divides 24. Since G is simple, $n \neq 1$. Therefore, $n=8$. It follows that $\left|N_{G}(S)\right|=21$. So $N_{G}(S) \cong C_{3} \ltimes S$, the unique non-abelian group with order 21. So the elements a and a^{2} and a^{4} are mutually G-conjugate.

Let $\chi_{4}(a)=\alpha$ and $\chi_{5}(b)=\beta$. Now α is a sum of three 7 -th roots of unity, moreover, if a 7-th root of unity η is an eigenvalue of the action of g_{5} on the simple module with character χ_{4}, then η^{2} and η^{4} are eigenvalues of that action. So the only possible values of α and β are 3 or z or z^{*}. If $\alpha=\beta=3$, then the column orthonormality for $[a]$ fails. So at least one of α and β must be z or z^{*}. But z and z^{*} are non-real, so χ_{4} and χ_{5} must be complex conjugates and $\{\alpha, \beta\}=\left\{z, z^{*}\right\}$. Renumbering χ_{4} and χ_{5} if necessary, we may assume that $\alpha=z$ and $\beta=z^{*}$. Then $\chi_{4}(b)=z^{*}$ and $\chi_{5}(b)=z$. For $k \in\{2,3,4\}$, we have $\chi_{4}(k)=\chi_{5}(k)$, which can be evaluated using orthogonality with the first column.

Alternative: It can be shown (though the candidates were not expected to know it), that the group $G \cong \mathrm{GL}_{3}(2) \cong P S L_{2}(7)$ has an outer automorphism σ that interchanges the two conjugacy classes of elements with order 7. Using that fact, the following quicker argument becomes available. Since $\chi_{0}, \chi_{1}, \chi_{2}, \chi_{3}$ are constant on the elements with order 7 , we may assume that $\chi_{4}(b) \neq \alpha$. Then σ must interchange χ_{4} and χ_{5}, hence $\chi_{4}(b)=\beta$ and $\chi_{5}(b)=\alpha$. Then it is straightforward to determine α and β using column orthonormality.

2: Part (a). Noting that $b a^{k}=a^{-k} b$ for $k \in \mathbb{Z}$, we see that the conjugacy classes in Q_{16} are $\left\{b, a^{2} b, a^{4} b, a^{6} b\right\}$ and $\left\{a b, a^{3} b, a^{5} b, a^{7} b\right\}$ and those of the form $\left\{a^{k}, a^{-k}\right\}$.

Part (b). The character table is as shown.

	1	1	2	4	4	2	2	$\|\|g g\|$
	1	2	4	4	4	8	8	$\|\langle g\rangle\|$
	1	a^{4}	a^{2}	b	$a b$	a	a^{3}	g
χ_{0}	1	1	1	1	1	1	1	
χ_{1}	1	1	1	-1	-1	1	1	
χ_{2}	1	1	1	1	-1	-1	-1	
χ_{3}	1	1	1	-1	1	-1	-1	
χ_{4}	2	2	-2	0	0	0	0	
χ_{5}	2	-2	0	0	0	$\sqrt{2}$	$-\sqrt{2}$	
χ_{6}	2	-2	0	0	0	$-\sqrt{2}$	$\sqrt{2}$	

The first 5 irreducible characters in the table are inflated from the quotient $Q_{16} /\left\langle a^{4}\right\rangle \cong D_{8}$. The remaining characters χ_{5} and χ_{6} are induced from the faithful irreducible characters of the subgroup $\langle a\rangle \cong C_{8}$. An easy calculation of inner products confirms that χ_{5} and χ_{6} are irreducible.

3: For a contradiction, suppose that some prime p has higher multiplicity in $\chi(1)$ than in $|G|$. The primitive idempotent of $Z(\mathbb{C} G)$ associated with χ is

$$
e_{\chi}=\frac{\chi(1)}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g
$$

For any positive integer n, we have

$$
e_{\chi}=e_{\chi}^{n+2}=\left(\frac{\chi(1)}{|G|}\right)^{n+2} \sum_{g} \lambda(g) g
$$

for some algebraic integers $\lambda(g)$. Equating coefficients of the identity element, then multiplying by $|G|^{n+2}$, we obtain

$$
\chi(1)^{n} \lambda(1)=|G|^{n+1}
$$

But this equation cannot hold when p^{n} does not divide $|G|$.
4: Given $\mathbb{C} G$-modules M and M^{\prime}, then $\operatorname{End}_{\mathbb{C} G}(M) \equiv \operatorname{End}_{\mathbb{C} G}\left(M^{\prime}\right)$ if and only if $\operatorname{End}_{\mathbb{C} G}(M)$ and $\operatorname{End}_{\mathbb{C} G}\left(M^{\prime}\right)$ have the same number of Wedderburn components. Letting M run over all the non-zero finite-dimensional $\mathbb{C} G$-modules, then the number $n(M)$ of Wedderburn components of $\operatorname{End}_{\mathbb{C} G}(M)$ is equal to the number of mutually non-isomorphic simple composition factors of M. So the number of possibilities for $n(M)$ is the number of simple $\mathbb{C} G$-modules up to isomorphism. That is equal to the number of conjugacy classes of G, in other words, the number of partitions of 7 . Those partitions are

$$
1^{7}, 2.1^{5}, 2^{2} .1^{3}, 2^{3} .1,3.1^{4}, 3.2 .1^{2}, 3.2^{2}, 3^{2} .1,4.1^{3}, 4.2 .1,4.3,5.1^{2}, 5.2,6.1,7
$$

Therefore, the answer is 15 .

