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MATH 525

Group Representations, Fall 2023

Course specification

Laurence Barker, Bilkent University. Version: 20 December 2023

Classes: Mondays 11:30 - 12:20, Wednesdays 15:30 - 17:20, room SA Z02.

Office Hours: Mondays 10:30 - 11:20, SA 129.

Instructor: Laurence Barker
e-mail: barker at fen nokta bilkent nokta edu nokta tr.

Course Texts: The primary course text is:

Peter Webb, “A Course in Finite Group Representation Theory”, Cambridge Uni-
versity Press 2016. There is a free PDF download of the prepublication version on
the homepage of Peter Webb, University of Minnesota.

For the general ring theory, the recommended text is

T.-Y. Lam, “A First Course in Noncommutative Rings”, (Springer, Berlin, 1991).

For further representation theory, a recommended text is

Jean-Paul Serre, Linear Representations of Finite Groups, (Springer, Berlin, 1977).

Homework: Homeworks will be supplied, sometimes in course notes, sometimes in other files
on my homepage. They carry no course credit.

Course Documentation: As the course progresses, further documentation will appear on
my homepage.

Syllabus: Below is a tentative course schedule. The format of the following details is Week
number: Monday date: Subtopics (Section numbers).

Syllabus: The format of the following details is Week number: Monday date: Subtopics.

1: 11 Sept: Groups, rings, modules, representations.

2: 18 Sept: Groups, rings, modules, representations.

3: 25 Sept: General theory of semisimple rings. Maschke’s Theorem.

4: 2 Oct: The group algebra
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5: 9 Oct: Irreducible characters of semisimple algebras over a field of characteristic 0, in
general.

6: 16 Oct: Ordinary character tables for some small finite groups.

7: 23 Oct: Centrally primitive idempotents of semisimple algebras, and the group algebra in
particular.

8: 30 Oct: Orthogonality properties of the ordinary character table.

9: 6 Nov: Functors on modules and characters. Frobenius reciprocity.

10: 13 Nov: Constructing character tables using inflation and induction.

11: 20 Nov: Examples of character tables.

12: 27 Nov: Symmetric and alternating squares. Further groups and their character tables.

13: 4 Dec: Integrality properties of ordinary irreducible characters. Central characters.

14: 11 Dec: Burnside’s pαqβ-Theorem and characterization of Frobenius groups.

15: 18 Dec: Review.

Assessment:

• Quizzes, 10%,
• Midterm, 45%, at 20:00 - 22:00, Thursday, 16 November, in SA-Z03.
• Final, 45%, at 09:00 on Friday, 22 December, in SA-Z19.

An FZ grade will be awarded for Midterm marks that are below 20%.

75% attendance is compulsory.
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MATH 525 Presentations, with visitors, Fall 2023

Venue: Thursday, 21 December 2023, Room SA Z01

09:30: Mert Akman, Brauer’s characterization of ordinary characters.

10:00: Cabize Kavalcı, Introduction to modular representation theory.

10:30: Mehmet Kirtişoğlu, Independence of projective resolutions for Ext and Tor.

11:00: Esat Akin, The Stone–von Neumann Theorem for the Heisenberg group associated with
a finite abelian group.

11:30: Sevket Kaan Alkır, Frobenius algebras.

— — — [Lunchtime] — — —

13:30: Metehan Akkuş, Representations of locally compact groups.

14:00: Muhammed Gökman, Representations of Lie groups.

14:30: Enes Koç, Irreducible representations of SO(3).

15:00: Onur Ege Erden, Irreducible representations of SU(3).

15:30: Cansu Özdemir, Spin representations of 2n-dimensional rotation groups.

16:00: Kağan Akman, Clifford’s Theorem.

16:30: Deniz Özyörük, Tanaka reconstruction.
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Quizzes, with solutions

MATH 525, Group Representations, Fall 2023, Laurence Barker

version: 20 December 2023

Quiz 1: Let G = C3 = {1, a, a2}. Observe that the 1-dimensional C-vector space

C
∑
g∈G

g = C(1 + a+ a2)

is a CG-submodule of the regular CGmodule

CGCG = C1⊕ Ca⊕ Ca2 .

Find a basis for a complementary submodule.

Solution: Defining ω = e2πi/3, we have

CGCG = C(1 + a+ a2)⊕ C(1 + ω2a+ ωa2)⊕ C(1 + ωa+ ω2a2)

as a direct sum of 1-dimensional CG-modules. So the submodule C(1 + a + a2) has comple-
mentary submodule C(1 + ω2a+ ωa2)⊕ C(1 + ωa+ ω2a2). One basis for the complementary
submodule is the set {1 + ω2a+ ωa2, 1 + ωa+ ω2a2}.

Another basis for the complementary submodule is {1− 2a+ a2, 1 + a− 2a2}.

Comment 1: The above decomposition of CG already appeared in the answer to Homework
Question 1.1 part (b).

Comment 2: For any finite group G and any field K of characteristic 0, the regular KG-module

KGKG decomposes as a direct sum of KG-modules

KGKG = K
∑
g∈G

g ⊕
{∑
g∈G

λgg :
∑
g∈G

λg = 1} .

Quiz 2: Up to isomorphism, how many 12-dimensional semisimple algebras over C are there?

Solution: Since C is algebraically closed, any semisimple algebra over C is isomorphic to a direct
sum of matrix algebras over C. Therefore, the answer is the number of ways of expressing 12
as a sum of non-increasing squares. The ways of thus expressing 12 are

12 = 9 + 3.1 = 3.4 = 2.4 + 4.1 = 4 + 8.1 = 12.1 .

Therefore, the answer is 5.

Quiz 2: Advanced version: How many 12-dimensional semisimple algebras over R are there?
You may use a theorem of Frobenius which asserts that every finite-dimensional division algebra
over R is isomorphic to R or C or H.

Solution: Let m denote the answer.
For any natural number n, we define f(n) to be the number of ways of expressing n as a

sum of non-increasing squares. A table of values of f(n), for n ≤ 12, is as follows.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 1 1 2 2 2 2 3 4 4 4 5

Given any division ring ∆, then f(n) is the number of isomorphism classes of n-dimensional
algebras over ∆ that can be decomposed as direct sums of matrix algebras. Any 12-dimensional
algebra A over R decomposes as A = AH ⊕AC ⊕AR where each A∆ is a direct sum of matrix
algebras over ∆. As parameters of A, we introduce a = dimH(AH) and b = dimC(AC) and
c = dimR(AR). We have 4a+2b+c = 12. For each (a, b, c), the number of possible isomorphism
classes for A is f(a)f(b)f(c). Therefore,

m =
∑

a,b,c∈N : a+b+c=12

f(a)f(b)f(c) .

The possibilities for (a, b, c) and the values of f(a), f(b), f(c) and f(a)f(b)f(c) are as shown.

a 3 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0
b 0 2 1 0 4 3 2 1 0 6 5 4 3 2 1 0
c 0 0 2 4 0 2 4 6 8 0 2 4 6 8 10 12

f(a) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f(b) 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 1
f(c) 1 1 1 2 2 1 2 2 3 2 2 4 2 3 4 5

f(a)f(b)f(c) 1 1 1 2 2 1 2 2 3 2 2 4 2 3 4 5

Summing the entries of the bottom row, we conclude that m = 37.

Comment: When I set the advanced version of the quiz, I underestimated the answer. When
I later solved the quiz, it did take me more than ten minutes.

Quiz 3: Let G = A5, the alternating group of order 60. You may assume that the group
algebra CG has exactly 5 simple modules, up to isomorphism, with dimensions 1, 3, 3, 4, 5.
Up to isomorphism, how many simple 6-dimensional CG-modules are there?

Solution: Write S0, ..., S4 for representatives of the isomorphism classes of simple CG-modules,
enumerated such that their dimensions are 1, 3, 3, 4, 5, respectively. Any CG-module M is
determined by the multiplicities m0, ..., m4, where M ∼= m0S0 ⊕ ... ⊕m4S4. Now supposing
that dim(M) = 6, then

6 = m0 + 3m1 + 3m2 + 4m3 + 5m4 .

The number of possibilities for theisomorphism class of M is the number of natural number
solutions m0...m4 = (m0, ...,m4) to that equation. The solutions are

10001 , 20010 , 00200 , 02000 , 01100 , 30100 , 31000 , 60000 .

Thus, the answer is 8.

Quiz 4: The ordinary character table of
the group S3 = ⟨a, b : a3 = b2 = (ab)2⟩
is as shown. Evaluate the natural
numbers λ, µ, ν where
(χ2)

2 = λχ0 + µχ1 + νχ2.

1 3 2 |[g]|
1 2 3 |⟨g⟩|

χ(g) 1 b a g

χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

Solution: Let ψ = (χ2)
2. Now (ψ(1), ψ(b), ψ(a)) = (4, 0, 1). By inspection, ψ = χ0 + χ1 + χ2.

So λ = µ = ν = 1.
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Comment: We could also directly calculate λ = ⟨χ0 |ψ⟩ and similarly for µ and ν.

Quiz 5: Let H ≤ G be finite groups and χ an irreducible CG-character. Show that there
exists an irreducible CH-character ψ such that ⟨χ | indGH(ψ)⟩ > 0.

Solution: The regular CG-character χGreg is given by

χGreg =
∑

χ∈Irr(CG)

χ(1)χ .

From the formula χGreg(g) = |G|δg,1, with g ∈ G, we see that χGreg = indGH(χ
H
reg). So∑

ψ∈Irr(CH)

ψ(1)⟨χ | indGH(ψ)⟩ = ⟨χ | indGH(χHreg)⟩ = ⟨χ |χGreg⟩ = χ(1) .

It follows that ⟨χ | indGH(ψ)⟩ > 0 for some ψ.

Quiz 6: Consider the group D8 = ⟨a, b⟩ where a is a rotation through a quarter of a revolution
and b is a reflection. The character table of the subgroup C4 = ⟨a⟩ is as follows.

χ(g) 1 a a2 a3 g

ϕ0 1 1 1 1
ϕ1 1 i −1 −i
ϕ2 1 −1 1 −1
ϕ3 1 −i −1 i

Fill in the entries of the following table of characters induced to D8 from C4.

1 1 2 2 2 |[g]|
1 2 4 2 2 |⟨g⟩|
1 a2 a b ab g

ind(ϕ0) ? ? ? ? ?
ind(ϕ1) ? ? ? ? ?
ind(ϕ2) ? ? ? ? ?
ind(ϕ3) ? ? ? ? ?

Solution: Using the formula for induced characters, we obtain the following table.

1 a2 a b ab g

ind(ϕ0) 2 2 2 0 0
ind(ϕ1) 2 −2 0 0 0
ind(ϕ2) 2 2 −2 0 0
ind(ϕ3) 2 −2 0 0 0

Quiz 7: Let V = R3 as an RS4-module with S4 transitively permuting the vertices of a regular
tetrahedron in V . Enter, into the following table, the values of the CS4-character χCV of the
CS4-module CV = C⊗R V .

14 2.12 22 3.1 4 g

χCV ? ? ? ? ?

Solution: We shall show that the entries are as follows.
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14 2.12 22 3.1 4 g

χCV 3 1 −1 0 −1

The dimension of CV is χCV (1) = 3. The eigenvalues of each reflection 2.12 are 1, 1, −1,
which sum to χCV (2.1

2) = 1. The eigenvalues of each rotation 22 are 1, −1, −1, which sum
to χCV (2

2) = −1. The eigenvalues of each rotation 3.1 are 1, ω, ω2, where ω = e2πi/3, hence
χCV (3.1) = 0. The eigenvalues of the reflections with shape 4 are −1, i, −i, which sum to
χCV (4) = −1.

Alternative solution: Let χ0 denote the trivial CS4-character. The CS4-character χCV + χ0,
being the CS4-character of the CS4-module associated with the natural S4-set, has values 4,
2, 0, 1, 0 at 14, 2.12, 22, 3.1, 4, respectively.

Quiz 8: The group SL2(3) is the group of 2×2 matrices over the field with order 3. We have a
semidirect product SL2(3) = C3 ⋉Q8. Let ω = e2πi/3. Write a for a generator of the subgroup
C3. Write Q8 = {1, i, j, k, z, iz, jz, kz} in the usual way. We saw in class that part of the
character table for SL2(3) is as follows. (The first 4 rows are inflated from the quotient group
A4
∼= SL2(3)/⟨z⟩. The first entries of χ4, χ5, χ6 rows come from column orthonormality. The

second entries of those three rows come from column orthonormality together with the fact
that the only possible eigenvalues of the action of z are ±1.) Determine the entries labelled s,
s′, s′′, t, t′, t′′.

1 1 6 4 4 4 4 |[g]|
1 2 4 3 3 6 6 |⟨g⟩|
1 z i a a2 az a2z g

χ0 1 1 1 1 1 1 1
χ1 1 1 1 ω ω2 ω ω2

χ2 1 1 1 ω2 ω ω2 ω
χ3 3 3 −1 0 0 0 0

χ4 2 −2 s t ? ? ?
χ5 2 −2 s′ t′ ? ? ?
χ6 2 −2 s′′ t′′ ? ? ?

Solution: By column orthogonality, |s|2 + |s′|2 + |s′′|2 = 0. Therefore, s = s′ = s′′ = 0.
By column orthonormality, t and t′ and t′′ cannot all be 0. By considering tensor products

with χ1 and χ2, we may assume that t′ = ωt and t′′ = ω2t. Column orthonormality now gives
|t| = 1. But t must also be the sum of two cube roots of unity. We deduce that, numbering
χ4, χ5, χ6 suitably, then t = −1 and t′ = −ω and t′′ = −ω2.

Comment: The rest of the character table can now be determined easily, and it is as follows.
1 z i a a2 az a2z g

χ4 2 −2 0 −1 −1 1 1
χ5 2 −2 0 −ω −ω2 ω ω2

χ6 2 −2 0 −ω2 −ω ω2 ω
To see this, first note that, for the simple module S with character χ4, the eigenvalues of the
action of a must be ω and ω2, both with multiplicity 1. The eigenvalues of the action of a2

must be the same. Since z acts on S as negation, the eigenvalues of the action of az must be
−ω and −ω2, with both multiplicities 1. A similar comment holds for a2z. All the values for
χ4 are now clear. Using tensor products by χ1 and χ2 again, we obtain the remaining entries.
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MATH 525: Group Representations

Midterm

13 December 2023, LJB

1: (25 marks.) Let K be a field of characteristic 0. Let G be a finite group. Let A be an
algebra over K with a basis consiting of elements e(g) where g runs over the elements of G.
Suppose there is a function α : G × G → K − {0} such that e(g)e(h) = α(g, h)e(gh) for all
g, h ∈ G. Show that A is semisimple.

2: (25 marks.) Let F be a field. As an algebra over F , let W be the quotient of the free
algebra on X and Y by the ideal generated by Y X −XY − 1. Show that W is simple but not
semisimple.

3: (25 marks.) Find the ordinary character table of the group A6. You may state, without
proof, the character tables of smaller finite groups.

4: (25 marks.) Let H ≤ G be finite groups and χ a faithful CG-character (meaning that, as a
homomorphism with domain G, the representation associated with χ is injective). Show that
H is abelian if and only if, for every irreducible CH-character ψ satisfying ⟨ψ | resGH(χ)⟩H ̸= 0,
we have ψ(1) = 1.
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Solutions to Midterm

1: We generalize a standard proof of Maschke’s Theorem, taking care over some complications
that arise. Replacing e(1) with e(1)/α(1, 1), we reduce to the case where e(1) is an idempotent.
But e(1)A = A, so e(1) = 1A.

We are to show that, given an A-module M with a submodule U , then there exists an
A-submodule V of M satisfying M = U ⊕ V . Let π′ : U ← M be any projection. We define
π : U ←M such that

πm =
1

|G|
∑
g∈G

e(g)π′e(g)−1m

for m ∈ M . If m ∈ U , then each e(g)m ∈ U , hence π′e(g)m = e(g)m and we deduce that
πm = m. Therefore, π is a projection with image U .

We have e(h)−1e(g)−1 = α(g, h)−1e(gh)−1. So, for all m ∈M and g ∈ G, we have

e(g)πe(g)−1m =
1

|G|
∑
h∈G

e(g)e(h)π′e(h)−1e(g)−1m =
1

|G|
∑
h∈G

e(gh)π′e((gh)−1)m = πm .

Suppposing now that m ∈ ker(π), we deduce that each e(g)−1m ∈ ker(π). Since e(g)e(g−1) =
α(g, g−1)e(1), each e(g)−1 is a nonzero scalar multiple of e(g−1). Therefore, each e(g)m ∈
ker(π). We have shown that ker(π) is an A-submodule of M . So we can put V = ker(π).

Comment: Such an algebra A is called a twisted group algebra over G. Using group
cohomology, it can be shown that A ∼= KFϵ with the following notation. There is a short
exact sequence of groups

1→ E → F → G→ 1

where E ≤ Z(F ) and E is an isomorphic copy of a finite subgroup of the multiplicative group
K − {0}. Also, ϵ is a primitive idempotent of the commutative group algebra KE. The
usual version of Maschke’s Theorem already tells us that KF is semisimple. Since KF =
KFϵ⊕KF (1− ϵ), it follows that A is semisimple.

2: Abusing notation, the images of X and Y in W will also be written as X and Y . Any
element a of W can be expressed as an F -linear combination of elements having the form
XmY n. When a is nonzero, we define the degree of x to be (m,n) where the coefficient of
XmY n in a is nonzero, m is maximal and, subject to that, n is maximal. Thus, the degrees
(m,n) are ordered lexicographically. Given nonzero elements a and a′ ofW with degrees (m,n)
and (m′, n′), respectively, then aa′ has degree (m+m′, n+ n′). Therefore, the units of W are
precisely the units of the subalgebra F . Yet W is infinite-dimensional over F . Therefore W
cannot be a finite-dimensional matrix algebra over a division ring. In other words, W is not
semisimple.

Let I be a nonzero ideal in W . Noting that Y X = XY + 1, an inductive argument shows
that Y Xm = nXm−1+XmY . Hence Y (XmY n)−(XmY n)Y = mXm−1Y n. Let a be a nonzero
element of I with minimal degree (m,n). By considering the element Y a−aY ∈ I, we see that
m = 0. By considering the element Xa − aX, we see that n = 0. We have shown that a is a
nonzero element of F . Therefore I =W and W is a simple algebra.

3: The ordinary character table of A6 is as shown on the next page, where µ = (1 +
√
5)/2

and ν = (1 −
√
5)/2 It can be obtained using induction from the subgroups A5 and S4, the

10



latter being embedded via the inclusion S4 ←↩ Sym{1, 2, 3, 4}×Sym{5, 6} given by s 7→ (s, t(s))
where t(s) is the transposition if and only if s has odd signature. We omit the details.

1 45 40 40 90 72 72 |[g]|
16 22.1 3.12 32 4.2 5.11 5.12 |⟨g⟩|

χ0 1 1 1 1 1 1 1
χ1 5 1 2 −1 −1 0 0
χ2 5 1 −1 2 −1 0 0
χ3 8 0 −1 −1 0 µ ν
χ4 8 0 −1 −1 0 ν µ
χ5 9 1 0 0 1 −1 −1
χ6 10 −2 1 1 0 0 0

4: In one direction, the required conclusion is trivial. Conversely, suppose ψ(1) = 1 for
every ψ appearing in the restriction resGH(χ). The representation with domain G associated
with χ is injective and must therefore restrict to an injective representation ρ with domain
H. Bur ρ is a direct sum of 1-dimensional representations ρψ with domain H. We have
1 = ker(ρ) =

⋂
ψ ker(ρψ), so H embeds in the direct product of the cyclic groups H/ ker(ψ).

We deduce that H is abelian.
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MATH 525: Group Representations

Final

22 December 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

Please write your name on every sheet of paper that you submit.

1: (30 marks.) Four of the irreducible characters of the simple group with order 168 are as
follows. Find the last two rows of the character table.

1 21 56 42 24 24 |[g]|
1 2 3 4 7 7 |⟨g⟩|

χ0 1 1 1 1 1 1
χ1 6 2 0 0 −1 −1
χ2 7 −1 1 −1 0 0
χ3 8 0 −1 0 1 1

2: (30 marks.) The generalized quaternion group Q16 with order 16 is generated by elements
a and b with relations a8 = 1, b2 = a4, bab−1 = a−1.

(a) Briefly, check that 1, a4, a2, b, ab, a, a3 are representatives of the conjugacy classes.

(b) Find the ordinary character table of CQ16.

3: (20 marks.) Let G be a finite group and χ an irreducible CG-character. By considering a
formula the idempotent of Z(CG) corresponding to χ, show that χ(1) divides |G|.

4: (20 marks.) Two algebras A and B over a field are said to be equivalent provided there
exist positive integers m and n and idempotents e ∈ Matm(A) and f ∈ Matn(B) such that
eMatm(A)e ∼= B and fMatn(B)f ∼= A. Let G = S7, the symmetric group with degree 7. Up to
equivalence, how many algebras are there having the form EndCG(M) where M is a non-zero
finite-dimensional CG-module?
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Solutions to Final

1: We define z = (−1 + i
√
7)/2 = ζ + ζ2 + ζ4 where ζ = e2πi/7. We shall show that the

completion of the table is as follows.

1 21 56 42 24 24 |[g]|
1 2 3 4 7 7 |⟨g⟩|

χ4 3 −1 1 0 z z∗

χ5 3 −1 1 0 z∗ z

Let 1, g2, g3, g4, a, b be representatives of the conjugacy classes, in the order of the columns.
By orthonormality of the first column, χ4(1)

2 + χ5(1)
2 = 168 − 12 − 62 − 72 − 82 = 18. The

only possibility is χ4(1) = χ5(1) = 3.
Consider the Sylow 7-subgroup S = ⟨a⟩. We have |CG(S)| = |CG(a)| = 168/24 = 7. So

CG(S) = S. But the number n of Sylow 7-subgroups of G is congruent to 1 modulo 7 and
divides 24. Since G is simple, n ̸= 1. Therefore, n = 8. It follows that |NG(S)| = 21. So
NG(S) ∼= C3 ⋉ S, the unique non-abelian group with order 21. So the elements a and a2 and
a4 are mutually G-conjugate.

Let χ4(a) = α and χ5(b) = β. Now α is a sum of three 7-th roots of unity, moreover, if a
7-th root of unity η is an eigenvalue of the action of g5 on the simple module with character
χ4, then η

2 and η4 are eigenvalues of that action. So the only possible values of α and β are
3 or z or z∗. If α = β = 3, then the column orthonormality for [a] fails. So at least one of α
and β must be z or z∗. But z and z∗ are non-real, so χ4 and χ5 must be complex conjugates
and {α, β} = {z, z∗}. Renumbering χ4 and χ5 if necessary, we may assume that α = z and
β = z∗. Then χ4(b) = z∗ and χ5(b) = z. For k ∈ {2, 3, 4}, we have χ4(k) = χ5(k), which can
be evaluated using orthogonality with the first column.

Alternative: It can be shown (though the candidates were not expected to know it), that
the group G ∼= GL3(2) ∼= PSL2(7) has an outer automorphism σ that interchanges the two
conjugacy classes of elements with order 7. Using that fact, the following quicker argument
becomes available. Since χ0, χ1, χ2, χ3 are constant on the elements with order 7, we may
assume that χ4(b) ̸= α. Then σ must interchange χ4 and χ5, hence χ4(b) = β and χ5(b) = α.
Then it is straightforward to determine α and β using column orthonormality.

2: Part (a). Noting that bak = a−kb for k ∈ Z, we see that the conjugacy classes in Q16 are
{b, a2b, a4b, a6b} and {ab, a3b, a5b, a7b} and those of the form {ak, a−k}.

Part (b). The character table is as shown.

1 1 2 4 4 2 2 |[g]|
1 2 4 4 4 8 8 |⟨g⟩|
1 a4 a2 b ab a a3 g

χ0 1 1 1 1 1 1 1
χ1 1 1 1 −1 −1 1 1
χ2 1 1 1 1 −1 −1 −1
χ3 1 1 1 −1 1 −1 −1
χ4 2 2 −2 0 0 0 0

χ5 2 −2 0 0 0
√
2 −
√
2

χ6 2 −2 0 0 0 −
√
2
√
2
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The first 5 irreducible characters in the table are inflated from the quotient Q16/⟨a4⟩ ∼= D8.
The remaining characters χ5 and χ6 are induced from the faithful irreducible characters of
the subgroup ⟨a⟩ ∼= C8. An easy calculation of inner products confirms that χ5 and χ6 are
irreducible.

3: For a contradiction, suppose that some prime p has higher multiplicity in χ(1) than in |G|.
The primitive idempotent of Z(CG) associated with χ is

eχ =
χ(1)

|G|
∑
g∈G

χ(g−1)g .

For any positive integer n, we have

eχ = en+2
χ =

(
χ(1)

|G|

)n+2∑
g

λ(g)g

for some algebraic integers λ(g). Equating coefficients of the identity element, then multiplying
by |G|n+2, we obtain

χ(1)nλ(1) = |G|n+1 .

But this equation cannot hold when pn does not divide |G|.

4: Given CG-modules M and M ′, then EndCG(M) ≡ EndCG(M
′) if and only if EndCG(M)

and EndCG(M
′) have the same number of Wedderburn components. LettingM run over all the

non-zero finite-dimensional CG-modules, then the number n(M) of Wedderburn components
of EndCG(M) is equal to the number of mutually non-isomorphic simple composition factors
of M . So the number of possibilities for n(M) is the number of simple CG-modules up to
isomorphism. That is equal to the number of conjugacy classes of G, in other words, the
number of partitions of 7. Those partitions are

17, 2.15, 22.13, 23.1, 3.14, 3.2.12, 3.22, 32.1, 4.13, 4.2.1, 4.3, 5.12, 5.2, 6.1, 7 .

Therefore, the answer is 15.
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