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MATH 524, Algebra 2, Spring 2023

Course specification

Laurence Barker, Bilkent University. Version: 1 June 2023

Classes: Tuesdays 09:30 - 10:20, Thursdays 13:30 - 15:20, room SAZ 02.

Office Hours: Tuesdays 08:30 - 09:20, room SA 129.

Instructor: Laurence Barker
e-mail: barker at fen nokta bilkent nokta edu nokta tr.

Course Texts: Required:

• David S. Dummit, Richard M. Foote, “Abstract Algebra”, 3rd edition, (Wiley, New York,
2003). PDF internet downloads available.

• Tsit Yuen Lam, “A First Course in Noncommutative Rings”, (Springer, New York, 1991).

Recommended:

• Joseph Rotman, “Galois Theory”, 2nd edition (Springer, New York, 1998).

• I. Martin Isaacs, “Algebra, a Graduate Course”, (Brooks/Cole, Pacfic Grove, 1993).

Syllabus: The format of the following details is Week number: Monday date: Subtopics.

1: Ring theory.

2: Ring theory.

3: Commutative rings.

4: Commutative rings.

5: Fields and field extensions.

6: Fields and field extensions

7: Fields and field extensions.

8: Galois extensions.

9: Galois extensions.

10: Galois theory.

11: Galois theory

12: Galois theory.

13: Applications of Galois theory.

14: Applications of Galois theory.

15: Review.
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Assessment:

• Homework, 0%
• Project and Presentation, 25%
• Midterm, 35%, 12 April
• Final, 40%, 12 June

A score of least 20% in the Midterm is needed to qualify to take the Final Exam, otherwise an
FZ grade will be awarded.

Projects and presentations

Cazibe Kavalcı, “Discrete valuation rings”.

Mehmat Kırtışoğlu, “Homological algebra and the Künneth theorem”.

Enes Koç, “Semisimplicity and the Hopkins–Levitzki theorem”.
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MATH 524: Algebra 2 Midterm 12 April 2023, LJB

1: (20 marks.) Let F5 denote the field with order 5.

(a) Find an irreducible polynomial f(X) of degree 3 over F5. Prove that your polynomial
f(X) is irreducible.

(b) For your polynomial f(X), write α = X + (f(X)). Thus, F5[α] = F5[X]/(f(X)). Express
α−1 as a linear combination of the basis elements 1, α, α2 of F5[α].

2: (20 marks.) Let E/F be field extension, and let K and L be subfields of E containing F .
We define the join KL to be the smallest subfield of E containing K and L.

(a) Show that if the extensions K/F and L/F are finite then the extension KL/F is finite
and |KL : F | ≤ |K : F |.|L : F |.

(b) Show that if, furthermore, |K : F | and |L : F | are coprime, then |KL : F | = |K : F |.|L : F |.

3: (20 marks.) We define the field of constructible numbers E to be the smallest subfield of
C such that, given x ∈ C satisfying x2 ∈ E, then x ∈ E. Thus, E is the set of complex numbers
x such that there exists a sequence x0, ..., xn = x with x20 ∈ Q and each x2m ∈ Q[x0, ..., xm−1].
Show that there exists an automorphism θ of E such that θ(

√
2) = −

√
2.

4: (20 marks.) Show that Z[e2πi/3] is a principal ideal domain.

5: (20 marks.) Let p1, ..., pn be distinct primes. Show that |Q[
√
p1, ...,

√
pn ] : Q| = 2n.
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Solutions to Midterm

1: Part (a). We shall show that the polynomial f(X) = X3+X+1 is irreducible over F5. The
values at 0, 1, 2, 3, 4 are 1, 3, 1, 1, 4, respectively, so f(X) has no linear factor. Therefore,
f(X) is irreducible.

Part (b). We have α3 + α+ 1 = 0. Therefore, α−1 = −1− α2.

2: Part (a). We argue by induction on |L : F |. The case L = F is trivial. Suppose L > F and
let α ∈ L− F .

First consider the case where L = F [α]. Then KL = K[α]. The minimal polynomial of α
over K divides the minimal polynomial of α over F , so

|KL : K| = |K[α] : K| ≤ |F [α] : F | = |L : F | .

Hence |KL : F | = |KL : K|.|K : F | ≤ |L : F |.|K : F |.
Now suppose L > F [α]. Applying the inductive hypothesis twice,

|KL : F | = |KL : F [α|.|F [α] : F | ≤ |KF [α] : F |.|L : F [α]|.|F [α] : F |

= |KF [α] : F |.|L : F [α]| ≤ |K : F |.|F [α] : F |.|L : F [α]| = |K : F |.|L : F | .
Part (b). By an equality above, |K : F | divides |KL : F |. Similarly, |L : F | divides

|KL : F |. So if |K : F | and |L : F | are coprime, |K : F |.|L : F | divides |KL : F | and the
required equality follows.

3: Let P be the set of pairs (E, ϕ) such that E ≤ E and ϕ : E → E is a map extending θ. We
partially order P by inclusion and restriction. We have (Q, θ) ∈ P, so P ≠ ∅. The unionset of
a chain C in P is an upper bound for C. So we can apply Zorn’s Lemma, which tells us that P
has a maximal element (M,ψ). We must show that M = E and ψ is an automorphism.

Suppose, for a contradiction, that M < E. Then there exists α ∈ E such that α2 ∈ M .
Let f(X) = X2 − α2 as a polynomial over M . Let β be a root in E to the polynomial
ψ(f(X)) = X2 − ψ(α2) over ψ(M). Then ψ extends to a map M [α] → ψ(M)[β] such that
α 7→ β. This contradicts the maximality of M . We have shown that M = E.

Suppose, for another contradiction, that the endomorphism ψ : E → E is not an automor-
phism. Since ψ is injective, ψ cannot be surjective. Let γ ∈ E − ψ(E) such that γ2 ∈ ψ(E).
Let a ∈ E such that ψ(a) = γ2. The polynomial g(X) = X2 − a splits completely over E, so
the polynomial ψ(g(X)) = X2 − γ2 splits completely over ψ(E). We deduce that γ ∈ ψ(E),
which is a contradiction, as required.

4: Write ω = e2πi/3. Given a ∈ Z[ω], we define N(r) = aa∗ where a∗ denotes the complex
conjugate of a. Writing a = m + nω with m,n ∈ Z, then N(a) = m2 + n2 − mn ∈ N. We
shall show that N is a Euclidian norm. That will suffice, since every Eudlidian domain is a
principal ideal domain.

The elements of Z[ω] form a lattice of equilateral triangles in the complex plane. The sides
of the triangles have length 1. By straightforward trigonometry, the circumcircle of any one of
the triangles has radius 1/

√
3. Let a, b ∈ Z[ω] with b ̸= 0. Let q be a lattice point at minimal

distance from the complex number a/b. Then |a/b − q|2 ≤ 1/3. Letting r ∈ Z[ω] such that
a = bq + r, then |r| < |b|. Squaring, N(r) < N(b). So N is a Euclidian norm, as required.

5: For I ⊆ {1, ..., , n}, we define

rI =
∏
i∈I

√
pi .
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We shall show that the set consisting of the rI is a Q-basis for the field Kn = Q[
√
p1, ...,

√
pn]

and, moreover, for every subset I ⊆ {1, ..., n}, there is an automorphism σI of Kn such that
σ(
√
pi) = −√

pi if and only if i ∈ I. For a contradiction, consider a counter-example with n
minimal. Plainly, n ≥ 2.

We claim that Kn−1 < Kn. Supposing otherwise, then
√
pn ∈ Kn−1 and we can write

√
pn =

∑
J⊆{1,...,n−1}

aJrJ

with each aJ ∈ Q. If 1 ̸∈ J for all J satisfying aJ ̸= 0, then we obtain a contradiction by
considering Q[

√
p2, ...,

√
pn]. If 1 ∈ J for all J satisfying aJ ̸= 0, then

pn = p1(
∏
J

aJrJ/
√
p1)

2

and the squared term is both rational and an algebraic integer, hence a rational integer, which
contradicts the Fundamental Theorem of Arithmetic. So there exist indices J and J ′ such that
aJ ̸= 0 ̸= aJ ′ and J ∋ 1 ̸∈ J ′. Part of the inductive hypothesis is that for eachK ⊆ {1, ..., n−1},
there is an automorphism σK such that σK(

√
pk) = −√

pk if and only if k ∈ K. We have

±√
pn = σ{1}1(

√
pn) =

∑
J

sJaJrJ

where sJ is 1 or −1 depending on whether 1 ∈ J or 1 ̸∈ J , respectively. For some of the
nonzero terms of the summation, we have sJ = 1, while for some of the nonzero terms, we
have sJ = −1. By comparing with the above equality for

√
pn, we obtain a nonzero Q-linear

relation between the rJ . This contradicts the condition that the rJ comprise a Q-basis for
Kn−1. We have established the claim.

Since an automorphism ofKn is determined by its actions on the elements
√
pi for 1 ≤ i ≤ n,

we have |Aut(Kn)| ≤ 2n and it remains only to show that |Aut(Kn)| = 2n. NowKn is a splitting
field for X2 − pn over Kn, so each σK extends to an automorphism τK of Kn. On the other
hand, Kn is a splitting field for

∏n−1
j=1 (X

2 − pj) over Q[
√
pn], so the nontrivial automorphim√

pn 7→ −√
pn of Q[

√
pn] extends to an automorphism τ of Kn. The 2

n automorphisms τJ and
ττJ of Kn are mutually distinct. We have confirmed that |Aut(Kn)| = 2n, as required.
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MATH 524: Algebra 2 Final 12 June 2023, LJB

1: (25 marks.) Let f(X) be the minimal polynomial of
√

1 +
√
2 over Q. Let E be the splitting

field for f(X) over Q.

(a) Show that |E : Q| = 8.

(b) Find the Galois group Gal(E/Q) up to isomorphism.

(c) Find the number of intermediate fields Q ≤ L ≤ E.

(d) Find the number of L such that Q ≤ L ≤ E and L/Q is Galois.

2: (25 marks.) Let E be the splitting field for X12−1 over Q. Find all the strictly intermediate
fields Q < L < E, expressing them all in the form L = Q[a] with a ∈ E.

3: (25 marks.) Let K/F be a finite-degree field extension with characteristic 0. Show that
there exists an extension field E of K such that

|E : F | ≤ |K : F |!

and E/F is a Galois extension.

4: (25 marks.) Let A be a finite abelian group. Show that there exists a positive integer n and
a field L such that Q ≤ L ≤ Qn and Gal(L/Q) ∼= A. Here, Qn denotes the cyclotomic field with
index n. (You may find it helpful to use Dirichlet’s Theorem, which asserts that, given coprime
positive integers a and b, then there are infinitely many primes in the set {a+mb : m ∈ N}.)
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Solutions to Final

1: Part (a). Let a =
√
1 +

√
2. We have (a2 − 1)2 = 2, in other words, a4 − 2a2 − 1 = 0. So

f(X) divides X4 − 2X2 − 1.
Plainly, Q[

√
2 ] ≤ Q[a] ≤ E. Since E is a splitting field over Q, there exists σ ∈ Gal(E/F )

such that σ(
√
2 ) = −

√
2. We have σ(a)2 = 1 −

√
2. It is now clear that the roots to f(X)

are ±
√

1±
√
2. In particular, deg(f(X)) = 4 and f(X) = X4 − 2X2 − 1. Noting that

Q[a] ≤ R ̸∋ σ(a), we deduce that

|E : Q| = |Q[a, σ(a)] : Q[a]|.|Q[a] : Q| = 2.4 = 8 .

Part (b). Writing G = Gal(E/Q), we claim that G ∼= D8. By part (a), |G| = 8. But G
acts faithfully on the 4 roots to f(X), so G embeds in S4. The claim follows because the Sylow
2-subgroups of S4 are isomorphic to D8.

Part (c). The number of intermediate L is 10. Indeed, this is the number of subgroups of
D8, the subgroups being 1, 5, 1, 2, 1 copies of C1, C2, C4, V4, D8, respectively.

Part (d). The number of L with L/Q Galois is 6, since this is the number of normal
subgroups of D8, the only non-normal subgroups of D8 being 4 of those isomorphic of C2.

2: Let ζ = e2πi/6 = (
√
3 + i)/2, which is a primitive 12-th root of unity. Since (Z/12)× =

{1, 5, 7, 11}, the other Galois conjugates of ζ are

ζ5 = (−
√
3 + i)/2 , ζ7 = (−

√
3− i)/2 , ζ11 = (

√
3− i)/2 .

We have ζ + ζ11 =
√
3 and ζ + ζ5 = i. So 3 of the strictly intermediate fields L are Q[

√
3 ] and

Q[i
√
3 ] and Q[i]. To see that there are no other possibilities for L, we apply the Fundamental

Theorem of Galois Theory and observe that

Gal(Q12/Q) ∼= (Z/12)× ∼= (Z/4)× × (Z/3)× ∼= V4

which has precisely 3 proper (non-trivial and strict) subgroups.

Comment: Let ρ, σ, τ be the elements of Gal(Q12/Q) sending ζ to ζ5, ζ7, ζ11, respectively.
Then ρ fixes i, while τ fixes

√
3. So the element σ = ρτ fixes i

√
3. Therefore, the 3 proper

subgroups ⟨ρ⟩, ⟨σ⟩, ⟨τ⟩ of Gal(Q12/Q) have fixed fields

Q⟨ρ⟩
12 = Q[i] , Q⟨σ⟩

12 = Q[i
√
3 ] , Q⟨τ⟩

12 = Q[
√
3 ] .

3: Let us first note that, combining Artin’s Theorem with the Fundamental Theorem of
Galois Theory, we obtain following standard corollary: every finite-degree characteristic 0 field
extension C/D is simple, that is, C = D[a] for some a ∈ C. Indeed, writing C = D[a1, ..., ar],
letting fiX be the minimal polynomial of ai over D and letting B be the splitting field over
D for the product f1(X)...fr(X), then B ≥ C ≥ D and the Fundamental Theorem of Galois
Theory implies that there are only finitely many intermediate fields between B andD. Perforce,
there are only finitely many intermediate fields between C and D whence, by Artin’s Theorem,
C/D is simple.

In particular, K = F [a] for some a ∈ K. Let f(X) be the minimal polynomial for a over
F . Let n = deg(f(X)) = |K : F |. Let E be a splitting field for f(X) over K. Then E is a
splitting field for f(X) over F . So E/F is Galois. It remains only to show that |E : F | ≤ n!.
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Let a0, ..., an−1 be the roots of f(X) in E and let Lm = F [a0, ..., am], understanding that
L−1 = F . Since a0, ..., am−1 belong to Lm−1, the degree of the minimal polynomial of am over
Lm−1 is at most n−m. In other words, |Lm : Lm−1| ≤ n−m. By the Tower Law for Degrees
of Field Extensions, |E : F | ≤

∏
m(n−m) ≤ n! .

4: The Structure Theorem for Finite Abelian Groups tells us that A ∼= Ca1 × ...×Car for some
positive integers r and a1, ..., ar. By Dirichlet’s Theorem, there exist mutually distinct primes
p1, ..., pr such that each pi ≡ 1 modulo ai. Put n = p1...pr. Writing pi − 1 = aibi, we have
canonical isomorphisms

Gal(Qn/Q) ∼= (Z/n)× ∼= (Z/p1)× × ...× (Z/pr)× ∼= Ca1b1 × ...× Carbr .

Let B be the subgroup of Gal(Qn/Q) corresponding, via those isomorphisms, to the subgroup
Cb1× ...×Cbr of Ca1b1× ...×Carbr . Let L be the subfield of Qn fixed by B. By the Fundamental
Theorem of Galois Theory,

Gal(L/Q) ∼= Gal(Qn/Q)/B ∼= Ca1b1/Cb1 × ...× Carbr/Cbr
∼= A .

Comment: A deeper result, the Kronecker–Weber Theorem, is as follows: given a finite-degree
Galois extension K/Q such that Gal(K/Q) is abelian, then K embeds in Qn for some positive
integer n. It is not hard to show that this is equivalent to the assertion that, given an algebraic
number x, letting E be the splitting field of the minimal polynomial of x, then x is a Q-linear
combination of roots of unity if and only if Gal(E/Q) is abelian.
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