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Course specification

MATH 523, Algebra I, Fall 2016

Laurence Barker, Bilkent University. Version: 16 January 2017

Course Aims: The primary aim of this core course is to ensure that all students have a
thorough grasp of the basics of group theory and those basics of ring theory that prepare for a
subsequent study of Galois Theory. For a respectable but not distinguished grade, as regards
the group theory part, the student should be able find the subgroup lattices of small finite
groups such as S4 and A5, furthermore, the student should be aware of the theory behind the
techniques for finding subgroup lattices, especially Lagrange’s Theorem and Sylow’s Theorem.
For the ring theory, a minimal satisfactory requirement is to know standard theory and routines
associated with irreducibility of polynomials in a single variable.

Course Description: The final two-and-a-half weeks of the course are to be spent, firstly, on
one-hour presentations and discussion of presented material, secondly, on revision for the final
exam.

Course Instructor: Laurence Barker, Office SAZ 129.

Course Texts:

Primary: David S. Dummit, Richard M. Foote, “Abstract Algebra”, 3rd ed., (Wiley 2003).

Secondary: Michael Aschbacher, “Finite Group Theory” (Cambridge University Press 1986).

Some other sources may be supplied for small components of the syllabus material.

Classes: Tuesdays 10:40 - 11:30 SB-Z19, Fridays, 09:40 - 10:30 SB-Z19.

Office Hours: Fridays, 08:40 - 09:30, SAZ 129.

Syllabus: The catalogue syllabus material was thoroughly covered, specifically, all the theory
of abstract and permutation groups, all the theory of abstract commutative rings. In addition
to the marked presentations, activities included discussions and further presentations on back-
ground to some research topics that were of concern to the three strong students who took the
course.

Assessment: Homework 15%, Presentation 15%, Midterm 30%, Final 40%.

Presentation Titles, two-hour presentations:

Müge Fidan, The Euler characteristic of the p-subgroup complex.

Redi Haderi, Enriched categories.

Andi Nika, The Artin–Wedderburn Theorem.
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Homeworks and Presentations

MATH 523, Algebra 1, Fall 2016

Laurence Barker, Mathematics Department, Bilkent University,
version: 15 December 2016.

Office Hours: Fridays 08:40 - 09:30, room SA-129.

Homework 1

1.1: Using group theory, show that, given x, n ∈ Z with (x, n) = 1 < n, then xφ(n) ≡ 1 modulo
n, where φ denotes the Euler totient function.

1.2: Find, up to isomorphism, all the subgroups of the symmetric group S4 (of order 24),
the alternating group A5 (of order 60) and the dihedral group D2n (of order 2n, where n is a
positive integer).

1.3: The infinite group SO(3), called the special orthogonal group of degree 3, can be
regarded as the group of 3 × 3 real orthogonal matrices with determinant 1. It can also be
regarded as the group of rotations around a given point in 3-dimensional Euclidian space. Show
that, up to isomorphism, the finite subgroups of SO(3) are precisely those groups that appear
as subgroups of S4 or A5 or D2n. (Hint: you may assume the classification of the Platonic
solids: tetrahedron, octahedron, cube, dodecahedron, icosahedron).

1.4: Find, up to isomorphism, all the groups G such that the automorphism group Aut(G) is
trivial. (Hint: Use a theorem whose standard proof makes use of Zorn’s Lemma.)

Homework 2

2.1: Let G be a finite group. Let H be a subgroup of G such that |G : H| is the smallest prime
divisor of |G|. Show that H �G.

2.2: For a group G, let QB(G) denote the Burnside algebra of G over Q. For each H ≤ G,
define a Q-linear map εH : QB(G)→ Q such that, given a finite G-set X, then εH [X] = |XH |.
Show that, for H,K ≤ G, we have εH = εK if and only if H =G K.

Homework 3

3.1: Extend, to the context of any principal idea domain, the lectured statement and proof
Eisenstein’s Criterion.

3.2: Hence show that, given a local principal ideal domain R with characteristic zero field of
fractions K and characteristic p 6= 0 residue field R/J(R) then, when n is sufficiently large, K
cannot have primitive roots of unity of order pn.
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MATH 523: Algebra I. Midterm. LJB, 18 November 2016, Bilkent University.

1: Given a group G, a G-set Ω and an element g ∈ G, we define the support of g in Ω to be

supp(g) = {ω ∈ Ω : gω 6= ω} .

When supp(g) = Ω, we say that g acts fixed-point-freely on Ω. Show that, if G acts
transitively on Ω and 1 < |Ω| <∞, then some element of G acts fixed-point-freely on Ω.

2: By the following steps, show that the alternating group An is simple for all integers n ≥ 5.
(No marks will be awarded for proving the theorem by a different method and then retrospec-
tively deducing the steps.)

(a) In at most ten words, indicate a quick easy way of proving the simplicity of A5.

(b) Inductively, now suppose that n ≥ 6 and An−1 is simple. For a contradiction, suppose also
that An has a proper normal subgroup L. Show that L acts transitively on {1, ..., n} and that
every non-trivial element of L acts fixed-point-freely.

(c) Deduce that |L| = n. Hence obtain a contradiction.

3: Let Ω be a set, and let Sym(Ω) denote the group of permutations of Ω. Find all the simple
normal subgroups of Sym(Ω). (Hint: Of course, the answer depends on the cardinality |Ω|. To
deal with cases where Ω is infinite, consider the elements of Sym(Ω) that have finite support.)

4: Homomorphisms, in the category of graphs, are edge-preserving functions between vertex
sets. The depicted graph is called the Peterson graph.

(a) Find a way of labelling the 10 vertices of the
Peterson graph with the 10 subsets of size 2 in
{1, 2, 3, 4, 5} such that any two adjacent vertices are
labelled with disjoint subsets. Hence prove that the
automorphism group of the graph is S5.

(b) Describe a surjective homomorphism from the
graph of the dodecahedron to the Peterson graph.
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(c) What is the isomorphism class of the group of
rotational symmetries of the dodecahedron? Justify your answer carefully.

(d) What is the isomorphism class of the group of rigid (distance-preserving) symmetries of
the dodecahedron? Justify your answer carefully.

5: Prove the following theorem, called Goursat’s Theorem: Let F and G be groups. Consider
the quintuples (I, U, θ, V, J) such that F ≥ I � U and V � J ≤ G and θ is an isomorphism
I/U ← J/V . The condition A = {(i, j) ∈ I × J : iU = θ(jV )} characterizes a bijective
correspondence (I, U, θ, V, J)↔ A between the quintuples and the subgroups A ≤ F ×G.
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MATH 523: Algebra I. Final. LJB, 10 January 2016, Bilkent University.

1: Let K �G be a finite groups.
(a) Let p be a prime, S a Sylow p-subgroup of K. Show that G = NG(S)K.
(b) State and prove a generalization of part (a) for a G-set X upon which K acts transitively.

2: The regular 4-dimensional polytope called the 600-cell or the tetraplex has 120 vertices.
Given θ ∈ [0, π], letting n(θ) be the number of vertices subtending, at the centre, an angle of
θ from a given vertex, then the non-zero values of n(θ) are as shown in the following table.

θ 0 π/5 π/3 2π/5 π/2 3π/5 2π/3 4π/5 π

n(θ) 1 12 20 12 30 12 20 12 1

For each of the 4 angles π/5, 2π/5, 3π/5, 4π/5, the 12 vertices at that angle comprise a regular
icosahedron. For each of the 2 angles π/3 and 2π/3, the 20 vertices form a regular dodeca-
hedron. The 30 vertices at angle π/2 form an icosidodecahedron (the polyhedron constructed
by taking the vertices to be the midpoints of the edges of an icosahedron or, alternatively, a
dodecahedron).

The rotational symmetry group G acts transitively on the vertices. Evaluate |G|. Evaluate
the number of Sylow 5-subgroups of G.

3: In this question, you may assume standard versions of standard results about finite abelian
groups. You are to formulate a suitable elegant definition and then prove that your definition
has the required features. You are to define, for any finitely generated abelian group A, the
notion of a quasibasis of A. The definition must be such that:

A: Any quasibasis of A is a finite subset of A.
B: Given a quasibasis S of A, then A ∼=

∏
s∈S〈s〉 where 〈s〉 denotes the cyclic subgroup

generated by s.
C: Given quasibases S and T of A, then there exists a bijection S ↔ T such that, when
S 3 s↔ t ∈ T , we have 〈s〉 ∼= 〈t〉.
D: Every finitely generated abelian group has a quasibasis.

Solutions to Final exam

1: Part (a). The uniqueness part of Sylow’s Theorem implies that, given g ∈ G, then there
exists k ∈ K such that Sg = Sk. Hence gk−1 ∈ NG(S).

Part (b). Given x ∈ X, then G = NG(x)K. The proof is the same as for part (a), but with
S replaced by x and with the equality Sg = Sk replaced by g−1x = k−1x.

Comment: These arguments, and other variants, are sometimes called Frattini arguments.
According to legend (I have not checked the primary source), part (a) is the original Frattini
argument, used by Giovanni Frattini in 1885.

2: Recall, the regular icosahedron and regular dodecahedron both have rotational symmetry
group A5. The icosidodecahedron, by its construction, also has rotational symmetry group A5.
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In particular, the G-stabilizer of a vertex is A5. By the Orbit–Stabilizer Equation,

|G| = 120 |A5| = 25.32.52 = 7200 .

Let n be the number of Sylow 5-subgroups of G. We shall prove that n = 36.
By Sylow’s Theorem, n ≡ 1 modulo 5 and n divides 25.32 = 288. So

n ∈ {1, 16, 6, 96, 36} .

Let us say that an element g ∈ G is good provided |〈g〉| = 5 and g fixes a vertex. Consider a
good element g and a g-fixed vertex x. stabilized by g. Let m(θ) be the set of g-fixed vertices
subtending, at the centre, an angle of θ from x. A rotation of the dodecahedron with order
5 fixes 2 opposite vertices. But, for the other two polygons mentioned in the question, the
vertices have degree less than 5, hence a rotation with order 5 cannot fix any vertices. We
deduce that the values of m are as shown in the next table.

θ 0 π/5 π/3 2π/5 π/2 3π/5 2π/3 4π/5 π

m(θ) 1 2 0 2 0 2 0 2 1

In particular, each good element of G fixes precisely 10 vertices. So, letting s be the number of
good elements, there are precisely 10s pairs (h, y) such that h is a good element fixing vertex
y. On the other hand, since A5 has precisely 24 elements with order 5, the number of such
pairs is 120.24. Therefore s = 120.24/10 = 25.32 = 288. Since there are only 2 conjugacy
classes of elements with order 5 in A5, there must be at most 2 conjugacy classes of good
elements in G. So [g]G has order 288 or 144, in other words, CG(g) has order |G|/288 = 25 or
|G|/144 = 50. Either way, CG(g) evidently contains a unique Sylow 5-subgroup of G. But the
Sylow 5-subgroups of G have order 25, so they are abelian. We deduce that each good element
belongs to a unique Sylow 5-subgroup.

Let us say that a subgroup H ≤ G is good provided |H| = 5 and some element of H
is good, equivalently, all 4 non-trivial elements of H are good. The set of good subgroups is
stable under G-conjugation, so each Sylow p-subgroup contains the same number, k say, of
good subgroups. The number of good subgroups is s/4 = 72 = kn. Plainly, k 6= 5. A group of
order 25 can have at most 6 subgroup with order 5, so 1 ≤ k ≤ 6. Therefore

n ∈ {72/1, 72/2, 72/3, 72/4, 72/6} = {72, 36, 24, 18, 12} .

Comparing with the previously obtained constraint on n, we conclude that n = 36.

3: We define a quasibasis of A to be a subset S ⊆ A such that: S spans A; if
∑

s λs s = 0
withλs ∈ Z, then each λs s = 0; the annihilator of each s in Z is a primary ideal, we mean, (n)
where n = 0 or n is a prime power.

This can be generalized to the scenario where Z is replaced by any principal ideal domain
Θ. A primary ideal of Θ is an ideal I such that, in the quotient ring, Θ/I, every zero-divisor
is nilpotent.

The justification is immediate by appeal to a suitable version of the Structure Theorem for
Finitely Generated Modules of a Principal Ideal Domain.
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