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MATH 325

Representation Theory, Fall 2023

Course specification

Laurence Barker, Bilkent University. Version: 30 December 2023.

Classes: Mondays 15:30 - 17:20, Thursdays 10:30 - 11:20, room SA Z04.

Recitations: Thursdays 11:30 - 12:20, SA Z04.

The Recitations, organized by Mahmut Esat Akın, are an opportunity for discussion of home-
works, course material, background material, or whatever the participants wish.

Office Hours: Wednesdays 17:30 - 18:20, SA 129.

Office Hours is for all the students on the course, regardless of strength.

Instructor: Laurence Barker
e-mail: barker at fen nokta bilkent nokta edu nokta tr.

Course Texts: The primary course text is:

Peter Webb, “A Course in Finite Group Representation Theory”, Cambridge Uni-
versity Press 2016. There is a free PDF download of the prepublication version on
the homepage of Peter Webb, University of Minnesota.

A suggested secondary text on character theory is:

Jon L. Alperin, Rowen B. Bell, “Groups and Representations”, (Springer, Berlin,
1995).

For those with an interest in a deeper treatment of ring theory, a recommended text is

T.-Y. Lam, “A First Course in Noncommutative Rings”, (Springer, Berlin, 1991).

Homework: You will not pick up course credits for homework, just as athletes do not pick up
prizes for training sessions. The homeworks are to help with learning the material and getting
into shape for the exams.

Course Documentation: As the course progresses, further documentation will appear on
the course Moodle site and my homepage.

Syllabus: Below is a tentative course schedule. The format of the following details is Week
number: Monday date: Subtopics (Section numbers).
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Syllabus: The format of the following details is Week number: Monday date: Subtopics.

1: 11 Sept: (Thursday only.) Group representations and ordinary characters.

2: 18 Sept: Groups, rings and modules.

3: 25 Sept: Semisimple modules and semisimple rings. The group algebra and Maschke’s
Theorem.

4: 2 Oct: Conjugacy classes and the centre of a group algebra.

5: 9 Oct: Ordinary irreducible characters.

6: 16 Oct: Ordinary character tables for some small finite groups.

7: 23 Oct: Centrally primitive idempotents of the group algebra.

8: 30 Oct: Orthogonality properties of the ordinary character table.

9: 6 Nov: Inflation, restriction and induction of characters. Frobenius reciprocity.

10: 13 Nov: Constructing character tables.

11: 20 Nov: The character tables of the alternating and symmetric groups.

12: 27 Nov: Symmetric and alternating squares. Further groups and their character tables.

13: 4 Dec: Integrality properties of ordinary irreducible characters.

14: 11 Dec: As applications, Burnside’s pαqβ-Theorem and characterization of Frobenius
groups.

15: 18 Dec: (Monday only.) Review.

Assessment:

• Quizzes, 10%,
• Midterm, 45%, at 20:00 - 22:00, Thursday, 16 November, in SA-Z03.
• Final, 45%, at 09:00 on Friday, 5 January 2024, in SA-Z18.

An FZ grade will be awarded for Midterm marks that are below 20% and that also display
outright incomprehension of basic concepts.

75% attendance is compulsory.

Asking questions in class is very helpful. It makes the classes come alive, and it often improves
my sense of how to pitch the material. The rule for talking in class is: if you speak, then you
must speak to everyone in the room.
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Quizzes, with solutions

MATH 325, Representation Theory, Fall 2023, Laurence Barker

version: 20 December 2023

Quiz 1: Let G = C3 = {1, a, a2}. Observe that the 1-dimensional C-vector space

C
∑
g∈G

g = C(1 + a+ a2)

is a CG-submodule of the regular CGmodule

CGCG = C1⊕ Ca⊕ Ca2 .

Find a basis for a complementary submodule.

Solution: Defining ω = e2πi/3, we have

CGCG = C(1 + a+ a2)⊕ C(1 + ω2a+ ωa2)⊕ C(1 + ωa+ ω2a2)

as a direct sum of 1-dimensional CG-modules. So the submodule C(1 + a + a2) has comple-
mentary submodule C(1 + ω2a+ ωa2)⊕ C(1 + ωa+ ω2a2). One basis for the complementary
submodule is the set {1 + ω2a+ ωa2, 1 + ωa+ ω2a2}.

Another basis for the complementary submodule is {1− 2a+ a2, 1 + a− 2a2}.

Comment 1: The above decomposition of CG already appeared in the answer to Homework
Question 1.1 part (b).

Comment 2: For any finite group G and any field K of characteristic 0, the regular KG-module

KGKG decomposes as a direct sum of KG-modules

KGKG = K
∑
g∈G

g ⊕
{∑
g∈G

λgg :
∑
g∈G

λg = 1} .

Quiz 2: Up to isomorphism, how many 12-dimensional semisimple algebras over C are there?

Solution: Since C is algebraically closed, any semisimple algebra over C is isomorphic to a direct
sum of matrix algebras over C. Therefore, the answer is the number of ways of expressing 12
as a sum of non-increasing squares. The ways of thus expressing 12 are

12 = 9 + 3.1 = 3.4 = 2.4 + 4.1 = 4 + 8.1 = 12.1 .

Therefore, the answer is 5.

Quiz 2: Advanced version: How many 12-dimensional semisimple algebras over R are there?
You may use a theorem of Frobenius which asserts that every finite-dimensional division algebra
over R is isomorphic to R or C or H.

Solution: Let m denote the answer.
For any natural number n, we define f(n) to be the number of ways of expressing n as a

sum of non-increasing squares. A table of values of f(n), for n ≤ 12, is as follows.

4



n 0 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 1 1 2 2 2 2 3 4 4 4 5

Given any division ring ∆, then f(n) is the number of isomorphism classes of n-dimensional
algebras over ∆ that can be decomposed as direct sums of matrix algebras. Any 12-dimensional
algebra A over R decomposes as A = AH ⊕AC ⊕AR where each A∆ is a direct sum of matrix
algebras over ∆. As parameters of A, we introduce a = dimH(AH) and b = dimC(AC) and
c = dimR(AR). We have 4a+2b+c = 12. For each (a, b, c), the number of possible isomorphism
classes for A is f(a)f(b)f(c). Therefore,

m =
∑

a,b,c∈N : a+b+c=12

f(a)f(b)f(c) .

The possibilities for (a, b, c) and the values of f(a), f(b), f(c) and f(a)f(b)f(c) are as shown.

a 3 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0
b 0 2 1 0 4 3 2 1 0 6 5 4 3 2 1 0
c 0 0 2 4 0 2 4 6 8 0 2 4 6 8 10 12

f(a) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f(b) 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 1
f(c) 1 1 1 2 2 1 2 2 3 2 2 4 2 3 4 5

f(a)f(b)f(c) 1 1 1 2 2 1 2 2 3 2 2 4 2 3 4 5

Summing the entries of the bottom row, we conclude that m = 37.

Comment: When I set the advanced version of the quiz, I underestimated the answer. When
I later solved the quiz, it did take me more than ten minutes.

Quiz 3: Let G = A5, the alternating group of order 60. You may assume that the group
algebra CG has exactly 5 simple modules, up to isomorphism, with dimensions 1, 3, 3, 4, 5.
Up to isomorphism, how many simple 6-dimensional CG-modules are there?

Solution: Write S0, ..., S4 for representatives of the isomorphism classes of simple CG-modules,
enumerated such that their dimensions are 1, 3, 3, 4, 5, respectively. Any CG-module M is
determined by the multiplicities m0, ..., m4, where M ∼= m0S0 ⊕ ... ⊕m4S4. Now supposing
that dim(M) = 6, then

6 = m0 + 3m1 + 3m2 + 4m3 + 5m4 .

The number of possibilities for theisomorphism class of M is the number of natural number
solutions m0...m4 = (m0, ...,m4) to that equation. The solutions are

10001 , 20010 , 00200 , 02000 , 01100 , 30100 , 31000 , 60000 .

Thus, the answer is 8.

Quiz 4: The ordinary character table of
the group S3 = ⟨a, b : a3 = b2 = (ab)2⟩
is as shown. Evaluate the natural
numbers λ, µ, ν where
(χ2)

2 = λχ0 + µχ1 + νχ2.

1 3 2 |[g]|
1 2 3 |⟨g⟩|

χ(g) 1 b a g

χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

Solution: Let ψ = (χ2)
2. Now (ψ(1), ψ(b), ψ(a)) = (4, 0, 1). By inspection, ψ = χ0 + χ1 + χ2.

So λ = µ = ν = 1.
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Comment: We could also directly calculate λ = ⟨χ0 |ψ⟩ and similarly for µ and ν.

Quiz 5: Let H ≤ G be finite groups and χ an irreducible CG-character. Show that there
exists an irreducible CH-character ψ such that ⟨χ | indGH(ψ)⟩ > 0.

Solution: The regular CG-character χGreg is given by

χGreg =
∑

χ∈Irr(CG)

χ(1)χ .

From the formula χGreg(g) = |G|δg,1, with g ∈ G, we see that χGreg = indGH(χ
H
reg). So∑

ψ∈Irr(CH)

ψ(1)⟨χ | indGH(ψ)⟩ = ⟨χ | indGH(χHreg)⟩ = ⟨χ |χGreg⟩ = χ(1) .

It follows that ⟨χ | indGH(ψ)⟩ > 0 for some ψ.

Quiz 6: Consider the group D8 = ⟨a, b⟩ where a is a rotation through a quarter of a revolution
and b is a reflection. The character table of the subgroup C4 = ⟨a⟩ is as follows.

χ(g) 1 a a2 a3 g

ϕ0 1 1 1 1
ϕ1 1 i −1 −i
ϕ2 1 −1 1 −1
ϕ3 1 −i −1 i

Fill in the entries of the following table of characters induced to D8 from C4.

1 1 2 2 2 |[g]|
1 2 4 2 2 |⟨g⟩|
1 a2 a b ab g

ind(ϕ0) ? ? ? ? ?
ind(ϕ1) ? ? ? ? ?
ind(ϕ2) ? ? ? ? ?
ind(ϕ3) ? ? ? ? ?

Solution: Using the formula for induced characters, we obtain the following table.

1 a2 a b ab g

ind(ϕ0) 2 2 2 0 0
ind(ϕ1) 2 −2 0 0 0
ind(ϕ2) 2 2 −2 0 0
ind(ϕ3) 2 −2 0 0 0

Quiz 7: Let V = R3 as an RS4-module with S4 transitively permuting the vertices of a regular
tetrahedron in V . Enter, into the following table, the values of the CS4-character χCV of the
CS4-module CV = C⊗R V .

14 2.12 22 3.1 4 g

χCV ? ? ? ? ?

Solution: We shall show that the entries are as follows.
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14 2.12 22 3.1 4 g

χCV 3 1 −1 0 −1

The dimension of CV is χCV (1) = 3. The eigenvalues of each reflection 2.12 are 1, 1, −1,
which sum to χCV (2.1

2) = 1. The eigenvalues of each rotation 22 are 1, −1, −1, which sum
to χCV (2

2) = −1. The eigenvalues of each rotation 3.1 are 1, ω, ω2, where ω = e2πi/3, hence
χCV (3.1) = 0. The eigenvalues of the reflections with shape 4 are −1, i, −i, which sum to
χCV (4) = −1.

Alternative solution: Let χ0 denote the trivial CS4-character. The CS4-character χCV + χ0,
being the CS4-character of the CS4-module associated with the natural S4-set, has values 4,
2, 0, 1, 0 at 14, 2.12, 22, 3.1, 4, respectively.

Quiz 8: The group SL2(3) is the group of 2×2 matrices over the field with order 3. We have a
semidirect product SL2(3) = C3 ⋉Q8. Let ω = e2πi/3. Write a for a generator of the subgroup
C3. Write Q8 = {1, i, j, k, z, iz, jz, kz} in the usual way. We saw in class that part of the
character table for SL2(3) is as follows. (The first 4 rows are inflated from the quotient group
A4
∼= SL2(3)/⟨z⟩. The first entries of χ4, χ5, χ6 rows come from column orthonormality. The

second entries of those three rows come from column orthonormality together with the fact
that the only possible eigenvalues of the action of z are ±1.) Determine the entries labelled s,
s′, s′′, t, t′, t′′.

1 1 6 4 4 4 4 |[g]|
1 2 4 3 3 6 6 |⟨g⟩|
1 z i a a2 az a2z g

χ0 1 1 1 1 1 1 1
χ1 1 1 1 ω ω2 ω ω2

χ2 1 1 1 ω2 ω ω2 ω
χ3 3 3 −1 0 0 0 0

χ4 2 −2 s t ? ? ?
χ5 2 −2 s′ t′ ? ? ?
χ6 2 −2 s′′ t′′ ? ? ?

Solution: By column orthogonality, |s|2 + |s′|2 + |s′′|2 = 0. Therefore, s = s′ = s′′ = 0.
By column orthonormality, t and t′ and t′′ cannot all be 0. By considering tensor products

with χ1 and χ2, we may assume that t′ = ωt and t′′ = ω2t. Column orthonormality now gives
|t| = 1. But t must also be the sum of two cube roots of unity. We deduce that, numbering
χ4, χ5, χ6 suitably, then t = −1 and t′ = −ω and t′′ = −ω2.

Comment: The rest of the character table can now be determined easily, and it is as follows.
1 z i a a2 az a2z g

χ4 2 −2 0 −1 −1 1 1
χ5 2 −2 0 −ω −ω2 ω ω2

χ6 2 −2 0 −ω2 −ω ω2 ω
To see this, first note that, for the simple module S with character χ4, the eigenvalues of the
action of a must be ω and ω2, both with multiplicity 1. The eigenvalues of the action of a2

must be the same. Since z acts on S as negation, the eigenvalues of the action of az must be
−ω and −ω2, with both multiplicities 1. A similar comment holds for a2z. All the values for
χ4 are now clear. Using tensor products by χ1 and χ2 again, we obtain the remaining entries.
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MATH 325, Representation Theory, Fall 2023

Homeworks

Laurence Barker, Bilkent University. Version: 12 January 2024.

Two guidelines to bear in mind:

Guideline 1: Write in complete sentences, otherwise the meaning will be ambiguous. “Prime
p” has no meaning. “So p is prime” and “Let p be a prime” do have meanings, different
meanings.

Guideline 2: Define your terms. The meaning of “So p is prime” is unclear if p has not been
introduced.

Homework 1

Recall, an element e of a ring is called an idempotent provided e2 = e.

Exercise 1.1: Find all the idempotents of:

(a) the group algebra CC2,

(b) the group algebra CC3,

(c) the group algebra CCn, where n is any positive integer.

Recall that, for a ring R, an R-module M is said to be simple provided M has exactly 2
submodules, namely {0} and M .

Exercise 1.2: Using Exercise 1.1, show that every CCn-module is 1-dimensional.

Recall, Maschke’s Theorem asserts that, given a finite group G and a field F such that char(F )
does not divide |G|, then the group algebra FG is semisimple. The next exercise gives an
alternative proof of that theorem in the special case where F = C.

Exercise 1.3: Let G be a finite group and let U be a finite-dimensional CG-module. Let

U × U ∋ (x, y) 7→ ⟨x | y⟩ ∈ C

be any inner product on U . Define

⟨x | y⟩′ = 1

|G|
∑
g∈G
⟨gx | gy⟩ .

Show that ⟨– | –⟩′ is an inner product on U . By considering orthogonal complements with
respect to ⟨– | –⟩′, show that CG is semisimple.

Exercise 1.4: Consider the unit group H× of the ring of quaternions H. Which of the following
groups are isomorphic to a subgroup of H×? (make sure you justify your answers clearly.)

(a) the group C4? (The cyclic group with order 4.)
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(b) the group V4? (The non-cyclic group with order 4.)

(c) the group C8? (The cyclic group with order 8.)

(d) the group Q8? (The quaternion group with order 8.)

(e) the group D8? (The dihedral group with order 8.)

The next question is not on examinable material. The notion of a rng is not on the examinable
syllabus.

Exercise 1.5: A rng R is said to be locally unital provided, for all x, y ∈ R, there exists
an idempotent e of R such that x, y ∈ eRe. For a locally unital rng R, find a definition of an
R-module that reduces to the usual notion of an R-module in the case where R is a ring.

Comment: Actually, Exercise 1.5 is quite easy, but it is background for the following more
difficult problem, which will become understandable when we have defined semisimplicity.

• A locally unital rng R is said to be strongly locally semisimple provided there exists a
set of idempotents E of R satisfying the following three conditions:

Orthogonality: For any two distinct elements e and f of E , we have ef = fe = 0,

Completeness: We have R =
⊕
e,f∈E

eRf ,

Partial semisimplicity: For any finite subset D ⊆ E , writing d for the sum of the elements of
D, the ring dRd is semisimple.

• A locally unital rng R is said to be weakly locally semsimple provided, for every idem-
potent e of R, the ring eRe is semisimple.

Given a locally unital rng R, show that, if R is strongly semisimple, then R is weakly semisim-
ple.

I do not know whether the converse holds. I would be interested in the answer because I have
used the strong version as a definition of “locally semisimple” in one paper, and the weak
version as the definition of “locally semisimple” in other papers. Has my terminology been
consistant?

Homework 2: Do the Exercises in Sections 2 and 3 of the notes.

Homework 3: Do the Exercises in Sections 4 and 5 of the notes.

Homework 4

Exercise 4.1: Show that, up to isomorphism, there exists a unique non-abelian group F21

with order 21. Find the character table of F21.

Exercise 4.2: Find the ordinary character table of the alternating group A6. (As well as
the midterm techniques, you may also make use of products of characters, symmetric and
alternating squares, induction. Note that A6 has a subgroup isomorphic to A5 and a subgroup
isomorphic to S4.)

Exercise 4.3: Find the ordinary character table of the symmetric group S6.
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For g ∈ G and H ≤ G and a CH-module M , we define the conjugate CgH-module
gHCon

g
H(M), sometimes written more briefly as gM , such that gM = M as C-vector spaces

and, given h ∈ H, then the action of gh on gM coincides with the action of h on M . We write
the associated map on characters as gHcon

g
H : CRC(

gH)← CRC(H).

Exercise 4.4: Let K �G be finite groups and ϕ a CK-character. Show that KresGindK(ϕ) is
a sum of G-conjugates of ϕ.

Exercise 4.5: Let G be a finite group and F,H ≤ G. Let M be a CH-module. Show that

FResGIndH(M) ∼=
⊕

FgH⊆G
F IndF∩gHCon

g
F g∩HResH(M)

where the notation indicates that FgH runs over the F -H-double consets in G.

Exercise 4.5: Let H ≤ G be finite groups, V a CH-module, U a CG-module. Recall, the
Frobenius Reciprocity Theorem asserts that

dimC(HomCG(GIndH(V ), U)) = dimC(HomCH(V,HResG(U)))

or equivalently, in character theoretic terms

⟨GindH(χV ) |χU ⟩G = ⟨χV |HresG(χU )⟩H .

In class, we directly proved the former equality using Schur’s Lemma, and we directly proved
the latter equality using the formula for the inner product on the character algebra. As a third
proof, explicitly find a C-linear isomorphism

HomCG(GIndH(V ), U) ∼= HomCH(V,HResG(U)) .
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MATH 325: Representation Theory

Midterm

16 November 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

1: (20 marks.) Let A be a 5-dimensional non-commutative semisimple algebra over R. How
many isomorphism classes of 8-dimensional A-modules are there?

2: (20 marks.) Find the ordinary character table of the group Q8, the quaternion group with
order 8.

3: (20 marks.) Find the ordinary character table of the group D16, the dihedral group with
order 16.

4: (20 marks.) Two idempotents e and f of a ring R are said to be conjugate provided
e = ufu−1 for some unit u of R. Let G be a finite group, and let χ1, ..., χk be the irreducible
CG-characters. In terms of k and the degrees χi(1):

(a) How many primitive idempotents does Z(CG) have?
(b) How many idempotents does Z(CG) have?
(c) How many conjugacy classes of primitive idempotents does CG have?

(d) How many conjugacy classes of idempotents does CG have?

5: (20 marks.) Let d be a positive integer and let A1, ..., Am be mutually commuting d×d
matrices over C. That is, AiAj = AjAi for all i and j. Suppose there exist positive integers
n1, ..., nr such that Ani

i is the identity matrix for all i. Using the representation theory of
finite groups, without using any general theorems about commuting matrices, show that there
exists an invertible d×d matrix P such that, for all i, the matrix PAiP

−1 is diagonal.
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Solutions to Midterm

1: A theorem of Frobenius asserts that the only finite-dimensional division algebras over R are
R and C and H. So, by the semisimplicity of A, we have

A ∼= Mata(H)⊕Matb(C)⊕Matc(R)

for some a, b, c ∈ N. Since dimR(A) = 5 and A is non-commutative, the only possibilities for
A are A ∼= H⊕ R or A ∼= Mat2(R)⊕ R. Let M be an 8-dimensional A-module.

In the first case, A has exactly 2 simple modules up to isomorphism, say, S and T , of
dimensions 4 and 1, respectively. Up to isomorphism, there are exactly 3 possibilities for M ,
namely S ⊕ S and S ⊕ 4T and 8T .

In the second case, A again has exactly 2 simple modules, S and T , but now of dimensions
2 and 1, respectively. The possibilities for M are sS ⊕ tT where s and t are natural numbers
satisfying 2s+ t = 8. Hence 0 ≤ s ≤ 4, and there are exactly 5 possibilities.

Therefore, the answer is 3 or 5.

2: We write Q8 = {1, i, j, k,−1,−i,−j,−k} with the usual notation. The conjugacy classes of
Q8 are

[1] = {1} , [−1] = {−1} , [i] = {i,−i} , [j] = {j,−j} , [k] = {k,−k} .

The ordinary character table of Q8 is as shown.

1 1 2 2 2 |[g]|
1 2 4 4 4 |⟨g⟩|
1 −1 i j k g

χG0 1 1 1 1 1
χG1 1 1 1 −1 −1
χG2 1 1 −1 1 −1
χG3 1 1 −1 −1 1
χG4 2 −2 0 0 0

The first four irreducible charcaters are inflated from the quotient group Q8/Z(Q8) ∼= V4.
Since Q8 has exactly 5 conjugacy classes, there is only one more row. That last row is obtained
using the column orthonormality between the first column and all the other columns.

3: First we shall construct the character table for D8, then we shall use it to obtain the
character table for D16. Generally, D4m = ⟨a, b : a2m = b2 = (ab)2 = 1⟩ for any positive integer
m. We claim that the character table for D8 is as follows.

1 1 2 2 2 |[g]|
1 2 4 4 4 |⟨g⟩|
1 a2 a b ab g

ψ0 1 1 1 1 1
ψ1 1 1 1 −1 −1
ψ2 1 1 −1 1 −1
ψ3 1 1 −1 −1 1
ψ4 2 −2 0 0 0
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An easy manipulation of the relations in the presentation of D4m, in general, yields ba = a−1b.
So the conjugacy classes of D4m are

[1] = {1} , [b] = {a2rb : r ∈ Z} , [ab] = {a2r+1 : r ∈ Z} , [as] = {as, a−s}

for s ∈ Z. The above table for D8 is now straightforward to obtain by the same steps as in
Question 2. We now prove that the character table for D16 is as follows.

1 4 4 2 2 2 1 |[g]|
1 2 2 8 4 8 2 |⟨g⟩|
1 b ab a a2 a3 a4 g

χ0 1 1 1 1 1 1 1
χ1 1 −1 −1 1 1 1 1
χ2 1 1 −1 −1 1 −1 1
χ3 1 −1 1 −1 1 −1 1

χ4 2 0 0 0 −2 0 2

χ5 2 0 0
√
2 0 −

√
2 0

χ6 2 0 0 −
√
2 0

√
2 0

The irreducible characters χ0 to χ4 are inflated from the group D16/Z(D16) ∼= D8. The
irreducible chartacters χ5 and χ6 are the characters of the complexifications of the real rep-
resentations obtained by letting D16 act on a regular octogon with a acting as a rotation by
π/4 or 3π/4, respectively. Indeed, the trace of the action of a for those two representations is
2 cos(π/4) =

√
2 and 2 cos(3π/4) = −

√
2, respectively.

4: Part (a). There is a bijective correspondence χ↔ eχ between the irreducible characters χ
of G and the primitive idempotents eχ of Z(CG). So the number of primitive idempotents of
Z(CG) is k.

Part (b). The idempotents of Z(CG) are the elements of Z(CG) that have the form
∑

χ zχeχ
where each zχ ∈ {0, 1}. So the number of such idempotents is 2k.

Part (c). Given any poistive integer n, then Matn(C) has exactly n + 1 conjugacy classes
of idempotents, indeed, two idempotents i and j of Matn(C) are conjugate if and only if
i and j have the same rank. Moreover, i is primitive if and only if i has rank 1. Hence,
Matn(C) has a unique conjugacy class of primitive idempotents. We have CG ∼=

⊕
χCGeχ and

CGeχ ∼= Matχ(1)(C). Every idempotent i of CG decomposes as a sum of mutually orthogonal
idempotents i =

∑
χ ieχ.

When i is primitive, we have ieχ = i for some χ and all the other terms of the summation
are zero. So the number of conjugacy classes of primitive idempotents of CG is k.

Part (d). By the first paragraph of the response to part (c), the number of conjugacy
classes of idempotents of CG is the product

∏
χ(χ(1) + 1).

5: Let A be the multiplicative abelian group generated by the Ai. Let ρ : CA → Matn(C)
be the C-linear extension of the identity map on A. Identifying Matn(C) = EndC(Cn) in
the usual way, we regard Cn as a CA-module with representation ρ. By Maschke’s Theorem,
Cn = V1 ⊕ ...⊕ Vn as a direct sum of 1-dimensional CA-modules. Let vi be a nonzero element
of Vi. With respect to the basis V = {v1, ..., vn}, the matrix representing the action of any
element of CA is diagonal. Therefore, letting P be the transformation matrix from coordinates
with respect to the standard basis of Cn to coordinates with respect to V, then PAP−1 is a
diagonal matrix for all A ∈ A.
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Midterm Makeup

12 December 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

1: (20 marks.) Find the set of all positive integers n such that n is the number of isomorphism
classes of simple modules for some 9-dimensional semisimple algebra over R.

2: (20 marks.) Find the ordinary character table of the group C2 × S3, where C2 denotes the
cyclic group with order 2 and S3 denotes the symmetric group with order 6.

3: (20 marks.) Find the ordinary character table of the group D12, the dihedral group with
order 12.

4: (20 marks.) Let G be a finite group and χ the CG-character of a CG-submodule M of the
regular CG-module CGCG. Let A = EndCG(M). (Thus, A is the algebra of C-linear maps
M → M that commute with the action of G.) Describe, in terms of χ and the irreducible
CG-characters:
(a) The number of isomorphism classes of simple Z(CG)-submodules of M .

(b) The dimensions of the simple Z(CG)-submodules of M .

(c) The number of isomorphism classes of simple A-submodules of M .

(d) The dimensions of the simple A-submodules of M .

5: (20 marks.) Find all the simple submodules of the regular RC5-module RC5RC5.
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MATH 325: Representation Theory

Final

5 January 2024, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

Please write your name on every sheet of paper that you submit.

1: (20 marks.) Let G be a finite group and H a subgroup of G such that H ̸= G. Show that
the permutation CG-module CG/H is not simple.

2: (30 marks.) (a) Construct the ordinary character table of the dihedral group D18 with
order 18.

(b) Show that, for every irreducible CD18-character χ, there exists a subgroup C ≤ D18 and
an irreducible CC-character ψ such that χ = indD18

C (ψ).

3: (30 marks.) Let H be the non-abelian group generated by elements u, v, w such that:

• the elements u and v and w all have order 3,

• the element w is in the centre of H,

• we have vu = uvw.

(a) Show that, Z(H) = {1, w, w2} and, for every h ∈ H − Z(H), the conjugacy class of h is
[h] = {h, hw, hw2}.
(b) Construct the ordinary character table of H.

4: (20 marks.) Let G = S6, the symmetric group with degree 6. Up to isomorphism, how many
algebras are there that have the form Z(EndCG(M)) where M is a non-zero finite-dimensional
CG-module?
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Solutions to Final

1: The 1-dimensional subspace V of CG/H spanned by the sum of the elements of G/H is
a CG-submodule of CG/H. Yet the dimension of CG/H is |G : H|, which is greater than 1
because H ̸= G. So V is a proper submodule of CG/H.

Sketch of alternative: Using the formula for the inner product on the character algebra, it can
be shown that the trivial CG-character has multiplicity 1 in the CG-character of CG/H.

2: Write D18 = ⟨a, b : a9 = b2 = (ab)2 = 1⟩.
Part (a). The character table is as follows, where ξm = e2πim/9+ e−2πim/9 = 2 cos(2πm/9).

1 9 2 2 2 2 |[g]|
1 2 9 9 9 9 |⟨g⟩|
1 b a a2 a3 a4 g

χ0 1 1 1 1 1 1
χ1 1 −1 1 1 1 1

χ2 2 0 ξ1 ξ2 ξ3 ξ4
χ3 2 0 ξ2 ξ4 ξ3 ξ1
χ4 2 0 ξ4 ξ1 ξ3 ξ2
χ5 2 0 −1 −1 2 −1

The irreducible characters χ0 and χ1 are inflated from the quotient group D18/⟨a⟩ ∼= C2.
Since ⟨a⟩ is the derived subgroup of D18, there are no other irreducible CD18-characters of
degree 1. The other 4 irreducible characters of D18 are induced from the non-trivial irreducible
characters of the subgroup ⟨a⟩. They must be irreducible, because their inner products with
the two degree 1 irreducibles are 0.

Part (b). For χ0 and χ1, we can put CD18. For the other 4 irredicible CD18-characters,
the above construction shows that we can put C = ⟨a⟩.

3: Part (a). Plainly {1, w, w2} ≤ Z(H). Since H is a non-abelian 3 group with order 33, we
must have |Z(H)| = 3. Since H/Z(H) ∼= C3×C3, all the non-singleton conjugacy classes must
be of order 3 and must be contained in a coset of Z(H). But those cosets have order 3, so the
non-singleton conjugacy classes must coincide with the non-trivial cosets.

Part (b). The character table is as shown, where ω = e2πi/3.

1 1 1 3 3 3 3 3 3 3 3 |[g]|
1 3 3 3 3 3 3 3 3 3 3 |⟨g⟩|
1 w w2 v v2 u uv uv2 u2 u2v u2v2 |⟨g⟩|

χ0 1 1 1 1 1 1 1 1 1 1 1
χ1 1 1 1 ω ω2 1 ω ω2 1 ω ω2

χ2 1 1 1 ω2 ω 1 ω2 ω 1 ω2 ω
χ3 1 1 1 1 1 ω ω ω ω2 ω2 ω2

χ4 1 1 1 ω ω2 ω ω2 1 ω2 1 ω
χ5 1 1 1 ω2 ω ω 1 ω2 ω2 ω 1
χ6 1 1 1 1 1 ω2 ω2 ω2 ω ω ω
χ7 1 1 1 ω ω2 ω2 1 ω ω ω2 1
χ8 1 1 1 ω2 ω ω2 ω 1 ω 1 ω2

χ9 3 3ω 3ω2 0 0 0 0 0 0 0 0
χ10 3 3ω2 3ω 0 0 0 0 0 0 0 0
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The 9 irreducibles with degree 1 are inflated from H/Z(H). The characters χ9 and χ10 are
induced from the two irreducible characters of ⟨v, w⟩ upon which v acts trivially and w acts
non-trivially.

4: There are exactly 11 simple CG-modules up to isomorphism, because that is the number of
conjugacy classes of G, indeed, the 11 partitions of 6 are:

1 + 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 2 + 2,

3 + 1 + 1 + 1, 3 + 2 + 1, 3 + 3, 4 + 1 + 1, 4 + 2, 5 + 1, 6 .

The algebra Z(EndCG(M)) is the direct sum of n copies of C, where n is the number of
isomorphism classes of simple CG-modules occuring in M . The possible values of n are the
positive integers less than or equal to 11. Thus, there are 11 possible values for n. So the
number of possible isomorphism classes for Z(EndCG(M)) is 11.
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