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MATH 324, Algebra 2, Spring 2023

Course specification

Laurence Barker, Bilkent University. Version: 1 June 2023.

Classes: Wednesdays 09:30 - 10:20, Fridays 13:30 - 15:20, room SAZ 04.

Office Hours: Wednesdays 08:30 - 09:20, room SA 129.

For all students, those doing well and aiming for an A, those doing badly and aiming for a C,
Office Hours is an opportunity to come and ask questions.

Instructor: Laurence Barker
e-mail: barker at fen nokta bilkent nokta edu nokta tr.

Assistant: Anıl Tokmak.

Course Texts: Required:

• David S. Dummit, Richard M. Foote, “Abstract Algebra”, 3rd edition, (Wiley, New York,
2003). PDF internet download available.

Recommended:

• For gentle introduction to early parts: Thomas W. Judson, “Abstract Algebra”, 2002, free
download from http://abstract.ups.edu.

• More advanced: Joseph Rotman, “Galois Theory”, 2nd edition (Springer, New York, 1998).

Syllabus: The format of the following details is Week number: Monday date: Subtopics,
Dummit–Foote section number.

1: Euclidian domains and principal ideal domains, 8.1, 8.2.

2: Unique factorization domains, 8.3.

3: Polynomial rings over UFDs, 9.1 - 9.5.

4: Field extensions, 13.1, 13.2.

5: Ruler-and-compass constructions, 13.3

6: Splitting fields, 13.4.

7: Separable extensions, 13.5.

8: Cyclotomic extensions, 13.6.

9: Galois extensions 14.1.

10: The Fundamental Theorem of Galois Theory, 14.2.

11: Composite extensions. The Primitive Element Theorem, 14.4
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12: The Galois group of a cyclotomic extension, 14.5.

13: Calculating Galois groups, 14.6.

14: The unsolvability of the quintic.

15: Review.

Assessment:

• Homework, 0% (but practice with the homework is the best way of training for the exams!)
• Presentation, 0% (giving a presentation is optional)
• Quizzes, 10%
• Midterm 40%, 12 April
• Final, 50%, 12 June

A score of least 20% in the Midterm is needed to qualify to take the Final Exam, otherwise an
FZ grade will be awarded.

75% attendance is compulsory.

Asking questions in class is very helpful. It makes the classes come alive, and it tends to
improve my presentation. The rule for talking in class is: if you speak, then you must speak
to everyone in the room.
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Quizzes, with solutions

MATH 324, Algebra 2, Spring 2023, Laurence Barker

version: 2 June 2023

Quiz 1: 28 April. Let ω ∈ F4 − F2.

(a) What is the degree of the minimal polynomial of ω over F2?

(b) What is the minimal polynomial of ω over F2?

Solution: Part (a). Since F4 = F2[ω], the degree is |F4 : F2| = 2.
Part (b). The minimal polnomial must be the only polynomial of degree 2 over F2 that

has no root in F2. So the minimal polynomial is X2 +X + 1..

Comment: Alternatively, for part (b), ω is a root to the polynomial

X3 − 1 = (X − 1)(X2 +X + 1)

and the factor X2 +X + 1, having no root in F2, must be the minimal polynomial of ω.

Quiz 2: 3 May. Let p and q be distinct primes. Let g be the automorphism of the field
E = Q[

√
p,
√
q] such that g(

√
p) =

√
p and g(

√
q) = −√

q. Let G = ⟨g⟩. You may assume that

E = Q1⊕Q
√
p⊕Q

√
q ⊕Q

√
pq

as a direct sum of 1-dimensional subspaces. What is the fixed field EG?

Solution: The fixed field is EG = Q[
√
p].

Comment: The fixed field can also be expressed as EG = Q1⊕Q√
p.

Quiz 3: 5 May. Consider the group V4 = {1, x, y, z}. Find the subgroups of V4. How many
subgroups are there?

Solution: The subgroups are 1 and ⟨x⟩ and ⟨y⟩ and ⟨z⟩ and V4. There are 5 of them.

Quiz 4: 10 May. What are the intermediate fields between Q and Q[
√
2,
√
3]? (Express them

all in the form Q[α1, α2, ...].)

Solution: They are Q, Q[
√
2], Q[

√
3], Q[

√
6], Q[

√
2,
√
3].

Quiz 5: 12 May. Find all the subgroups of the group Q8 = {1,−1, i, j, k,−i,−j,−k}. How
many of those subgroups are normal?

Solution: The subgroups are 1, ⟨−1⟩, ⟨i⟩, ⟨j⟩, ⟨k⟩, Q8. All 6 of them are normal.

Quiz 6: 17 May. Let E be the splitting field for X4 − X2 − 1 over Q. We have seen that
Gal(E/Q) ∼= D8. Let L be the intermediate field Q < L < E such that |L : Q| = 4 and L/Q is
Galois. Find, up to isomorphism, the group Gal(L/Q).
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Solution: Identifying Gal(E/Q) = D8, the subgroup Gal(E/L) fixing L is a normal subgroup
of D8 with order 2. There is only one such subgroup, namely Gal(E/L) = Z(D8). We have
Gal(L/Q) = D8/Z(D8) ∼= V4.

The next quiz will be similar. Beforehand, try to ensure that:

• You understand the Fundamental Theorem of Galois Theory. (There will be no need to
memorize it. As soon you have understood the theorem, it will become fixed in your memory
forever.)

• You know how to find the subgroups of a small given group.

• You know how to determine, up to isomorphism, the quotient of a given normal subgroup of
a given small group. For instance, A4/V4 ∼= C3 and S4/A4

∼= C2.

• You can put those three items together and do exercises such as Quiz 6.

Quiz 7: 24 May. Let E/F be a Galois extension with Gal(E/F ) ∼= A4. Let F ≤ L ≤ E with
Gal(E/L) ∼= V4. Find Gal(L/F ) up to isomorphism.

Solution: We have Gal(L/F ) ∼= A4/V4 ∼= C3.

Quiz 8: 31 May. Express Gal(Q30/Q) as a direct product of cyclic groups and evaluate
|Gal(Q30/Q)|.

Solution: Using the Chinese Remainder Theorem,

Gal(Q30/Q) ∼= (Z/30)× ∼= (Z/2)× × (Z/3)× × (Z/5)× ∼= C2 × C4

which has order ϕ(30) = 8.

Quiz 9: 2 June. Find the smallest positive integer n such that there exists an intermediate
field Q ≤ E ≤ Qn with Gal(E/Q) ∼= C11.

Solution: Since Gal(Qn/Q) ∼= (Z/n)×, we are to find the smallest n such that C11 is isomorphic
to a quotient group of (Z/n)×. In view of the Chinese Remainder Theorem, n = 23.
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MATH 324: Algebra 2 Midterm 12 April 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

1: (20 marks.) Evaluate gcd(X4 + 5X3 + 6X2 + 10X + 8, X3 + 6X2 + 11X + 12) in Q[X].

2: (20 marks.) Let F3 denote the field with order 3. Thus, F3 = {0, 1, 2}. Let

R = F3[X]/(X3 + 2X + 1) .

(a) Is R a field?

(b) Evaluate |R|, the cardinality of the set R.

3: (20 marks.) Let f(X) = X3 + 3X2 + 3X + 3 and g(X) = X4 + 3X3 + 3X2 + 3X + 3. Let
α and β be roots to f(X) and g(X), respectively. Evaluate:

(a) the degree |Q[α] : Q|,
(b) the degree |Q[β] : Q|,
(c) the degree |Q[α, β] : Q|.

4: (20 marks.) Let F be a field. Consider the polynomial ring with two variables

F [X,Y ] = F [X][Y ] .

Show that F [X,Y ] is not a Euclidian domain.

5: (20 marks.) Let n ≥ 3 and let E be the splitting field for X2n − 1 over Q.

(a) Show that
√
2 ∈ E.

(b) Show that there exists an automorphism θ of E such that θ(
√
2) = −

√
2.

(c) Show that, for exactly half of the automorphisms ϕ of E, we have ϕ(
√
2) = −

√
2.

Solutions to Midterm

1: By considering coeffients of X4 and X3, we have

X4 + 5X3 + 6X2 + 11X + 12 = (X − 1)(X3 + 6X2 + 11X + 12) + aX2 + bX + c

for some a, b ∈ Z. Now

(X − 1)(X3 + 6X2 + 11X + 12) = X4 + 5X3 + 5X2 +X − 12 .

So a = 1 and b = 9 and c = 20. Therefore,

gcd = gcd(X3 + 6X2 + 11X + 12, X2 + 9X + 20) .

By considering coefficients of X3 and X2, we have

X3 + 6X2 + 11X + 12 = (X − 3)(X2 + 9X + 20) + dX + e
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for some d, e ∈ Z. Since

(X − 3)(X2 + 9X + 20) = X3 + 6X2 − 7X − 60

we have d = 18 and e = 72. So

gcd = gcd(X2 + 9X + 20, X + 4) .

Finally, X2 + 9X + 20 = (X + 5)(X + 4). So gcd = X + 4.

2: Part (a). Let f(X) = X3 + 2X + 1. We have f(1) = f(2) = 1, so f(X) has no roots in F3.
It follows that f(X) is irreducible. Therefore, R is a field.

Part (b). Let α be the image of X in R. Then R = F3[α] and R has F3-basis {1, α, α2}.
So |R| = |F3|3 = 33 = 27.

3: Part (a). By Eisenstein’s Criterion, f(X) is irreducible, so |Q[α] : Q| = deg(f(X)) = 3.
Part (b). By Eisenstein’s Criterion, g(X) is irreducible, so |Q[β] : Q| = deg(g(X)) = 4.
Part (c). Since |Q[α] : Q| and |Q[β] : Q| are coprime,

|Q[α, β] : Q| = |Q[α] : Q|.|Q[β] : Q| = 12 .

4: The ideal (X,Y ) is not principal. So F [X][Y ] is not a PID. Perforce, F [X][Y ] is not an ED.

5: Part (a). The complex numbers ζ = (1 + i)/
√
2 and ζ = (1− i)/

√
2 are 8-th roots of unity,

so we may assume that ζ, ζ ∈ E. Hence
√
2 = ζ + ζ ∈ E.

Part (b). Plainly, there is a Q-automorphism ψ of Q[
√
2] given by ψ(

√
2) = −

√
2. Since E

is a splitting field for X2n − 1 over Q[
√
2], the automorphism ψ extends to an automorphism

of E.
Part (c). For every automorphism η of E, we have η(

√
2) = ±

√
2. So there is a function

σ : Aut(E) → {±1} such that η(
√
2) = σ(η)

√
2. Plainly, σ is a group homomorphism. By the

First Isomorphism Theorem for groups,

|Ker(σ)| = |Aut(E)−Ker(σ)| = |Aut(E)|/2 .

We have Aut(E)−Ker(σ) = {ϕ ∈ Aut(E) : ϕ(
√
2) = −

√
2}.

Comment: Part (c) can also be done without any group theory. We are to show that the sets
Ψ = {ψ ∈ Aut(E) : ψ(

√
2) =

√
2} and Φ = {ϕ ∈ Aut(E) : ψ(

√
2) = −

√
2} have the same

size. That follows because there is a bijective correspondence Ψ ↔ Φ such that ψ ↔ ϕ when
θ◦ψ = ϕ.
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MATH 324: Algebra 2 Final 12 June 2023, LJB

The duration of the exam is 120 minutes. It is a closed book exam.

1: (10 marks.) Let f(X) be a polynomial over R such that not all of the roots of f(X) are
real. Let E be the splitting field for f(X) over R. Determine the Galois group Gal(E/R) up
to isomorphism.

2: (20 marks.) Let f(X) = X2 −X − 1 as a polynomial over Q. Let E be the splitting field
for f(X) over Q.

(a) Evaluate the degree |E : Q|.
(b) How many fields L are there such that Q ≤ L ≤ E?

(c) How many Q-automorphisms of E are there?

(d) Determine the Galois group Gal(E/Q) up to isomorphism.

3: (30 marks.) Let g(X) = X3 − 3X + 101 as a polynomial over Q. Let K be the splitting
field for g(X) over Q.

(a) Explain why g(X) is irreducible.

(b) Show that g(X) has exactly one real root.

(c) Show that the Galois group Gal(K/Q) has an element with order 2.

(d) Determine Gal(K/Q) up to isomorphism.

(e) Find the number of intermediate fields Q ≤ L ≤ K.

(f) Find the number of L such that Q ≤ L ≤ K and L/Q is Galois.

4: (20 marks.) For a positive integer n, let Φn(X) denote the cyclotomic polynomial with
index n (the minimal polynomial of the primitive n-th roots of unity). Show that Φn(0) = ±1.

5: (20 marks.) Show that the extension Q[
√
1 +

√
2 ]/Q is not Galois. Using that observation,

give a counter-example to the assertion: “Given fields D ≥ E ≥ F such that the extensions
D/E and E/F are Galois, then the extension D/F is Galois.”
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Solutions to Final

1: We have E = C and Gal(E/R) ∼= C2.

Comment: The non-trivial element of Gal(C/R) is complex conjugation.

2: Part (a). The roots to f(X) are (1±
√
5)/2, so E = Q[

√
5]. Evidently, |E : Q| = 2.

Part (b). By part (a), the number of such L is 2.
Part (c). There is a unique non-trivial Q-automorphism of E, namely the automorphism

given by
√
5 7→

√
5. So the answer is 2.

Part (d). By part (c), Gal(E/Q) ∼= C2.

3: Part (a). Suppose g(X) is not irreducible. Since deg(g(X)) = 3, there must exist a rational
root q of g(X). Noting that 101 is prime, the rational root test implies that q = ±101. But,
plainly, g(−101) < 0 < g(101), which is a contradiction.

Part (b). The polynomial function g : R → R has derivative x 7→ 3(x2 − 1), so the only
local maxima and minima are at x = −1 and x = 1. Since g(−1) and g(1) are both positive,
g(X) has only one real root (for some value of x less than −1).

Part (c). Since g(X) is an irreducible cubic polynomial, g(X) has exactly 2 nonreal roots.
Embedding K in C, complex conjugation fixes the real root of g(X) and interchanges the 2
non-real roots.

Part (d). Write G = Gal(K/Q). The action of G on the 3 roots to g(X) gives rise to an
embedding of G in S3. That action is transitive, so G owns a 3-cycle. By part (c), G owns a
transposition. Therefore, G ∼= S3.

Part (e). By the Fundamental Theorem of Galois theory, the number of m of intermediate
L is the number of subgroups of S3. The subgroups of S3 are C1, C2, C3, S3 appearing 1, 3,
1, 1 times, respectively. So m = 6.

Part (f). Let n be the number of L such that Gal(L/Q) is Galois. By the Fundamental
Theorem of galois Theory again, n is the number of normal subgroups of S3. The normal
subgroups of S3 are precisely those subgroups that are isomorphic to C1 or C3 or S3. So n = 3.

4: Let ζ be a primitive n-th root of unity. The roots to Φn(X) are the elements of Qn having
the form ζa where a ∈ (Z/n)×. Except in the case where ζ = −1, the roots to Φn(X) occur in
pairs, where ζa is paired with ζ−a. Therefore, Φn(0) =

∏
a ζ

a = ±1.

Alternative: Since Φ1(X) = X − 1, we have Φ1(0) = −1. Generally, Xn − 1 =
∏

dΦd(X),
where d runs over the positive divisors of n. So −1 =

∏
dΦd(0). The required conclusion now

follows by an inductive argument on n.

Comment: In fact, both of the above arguments can be refined to show that Φn(0) = 1 for all
integers n with n ≥ 2.

5: Write a =
√

1 +
√
2 and D = Q[a]. For a contradiction, suppose D/Q is Galois. Since D

is the splitting field for a polynomial over Q the automorphism of Q[
√
2] given by

√
2 7→ −

√
2

extends to an automorphism σ of D. Since σ(a)2 = 1 −
√
2 < 0, we have σ(a) ̸∈ R. That is

impossible, since D ≤ R.
For the counter-example, we let D be as above, and we put E = Q[

√
2] and F = Q.
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